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2.1 Microstates and Macrostates

We consider a system composed of N identical particles confined to a space of V. The total energy E would
be equal to the sum of the energies of the individual particles.

E = ∑
i

niεi (2.1)

The specification of the actual values of the parameters N, V, E then defines a macrostate of the system.
At the molecular level, however, a large number of possibilities still exist because at that level there will
be a large number of different ways to make the total state of N, V, E (think out arranging the coins with
different sequence of head and tail). Each of the different ways specifies a microstate or complexion of the
given system.

The actual number of all possible microstates (Ω) will be a function of N, V, E. In principle, it is from
the magnitude of the number of Ω and from its dependence on the parameters N, V, E, that complete
thermodynamics can be derived.

2.2 Multiplicity in Einstein Solids

N: Number of the oscillators.
q: Number of energy states.

Ω(N, q) =
(

q + N − 1
q

)
=

(q + N − 1)!
q!(N − 1)!

(2.2)

It can be simply proved as follows
q circles;
N − 1 vertical lines;
how to arrange them?

Exercises
Calculate the multiplicity of an Einstein solid with 5 oscillators and [1,2,3,4,5] units of Energy.

2-1



2-2 Lecture 2: The Statistical Basis of Thermodynamics

q Ω(5, q)
1
2
3
4
5

2.3 Contact between statistics and thermodynamics

A1

(N1, V1, E1)

A2

(N2, V2, E2)

Figure 2.1: A schematic of two physical systems in thermal contact.

Let’s first figure out how Ω is related to the thermodynamic quantities. We consider two physical systems,
A1 and A2, which are separately in equilibrium. Let the macrostate of A1 be represented by the parameters
N1, V1and E1 so that it has Ω1(N1, V1, E1) possible microstates, and the macrostate of A2 be represented by
Ω2(N2, V2, E2). Can we derive some thermodynamic properties from Ω1(N1, V1, E1) and Ω2(N2, V2, E2)?

Let’s bring two systems into thermal contact. For simplicity, we only allow the heat exchange between the
two, while N, V remain fixed. This means there could be some interchanges between E1 and E2, however,
it has to be restricted by the conservation law.

E = E1 + E2 = const (2.3)

From the microscopic view, the total number of microstates could be expressed as,

Ω1(E1)Ω2(E2) = Ω1(E1)Ω2(E − E1) (2.4)

When the system approaches to the equilibrium, what should be the value of Ē1. According to the 2nd law,
the entropy should reach the maximum. Mathematically, we need to find Ē1 which satisfies,

(
∂Ω1(E1)

∂E1

)
E1=Ē1

Ω2(E2) +

(
∂Ω2(E2)

∂E2

)
E2=Ē2

∂E2

∂E1
Ω1(E1) = 0 (2.5)

Remember that ∆E1 = ∆E2 at each time interval, therefore(
∂ln Ω1(E1)

∂E1

)
E1=Ē1

=

(
∂ln Ω2(E2)

∂E2

)
E2=Ē2

(2.6)

Thus, our condition for equilibrium reduces to the equality of parameter β1 and β2:

β ≡
(

∂ln Ω(E)
∂E

)
E=Ē

(2.7)
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or a more complete version as follows,

β ≡
(

∂ln Ω(N, V, E)
∂E

)
N,V,E=Ē

(2.8)

Therefore, we find when two systems are into thermal contact, the exchange of heat continues until the
equilibrium E1, E2 reach some values. This happens only when the respective values of β1 and β2 be-
come equal. It is then natural to expect that the parameter β is somehow related to T. To determine this
relationship, we recall the thermodynamic formula(

∂S
∂E

)
N,V

=
1
T

(2.9)

Comparing eq. 2.8 and 2.9, we find (
∆S

∆lnΩ

)
=

1
βT

= const (2.10)

This correspondence was firstly established by Boltzmann. It was Planck who first wrote the explicit for-
mula

S = klnΩ (2.11)

It means that the absolute value of the entropy of a given physical system in terms of the total number of
microstates accessible to it conformity with the given macrostate, which provides a bridge between micro
and macroscopic.

2.4 More complete contact

Let’s continue to examine a more elaborate exchange between A1 and A2.

not only, (
∂lnΩ1(E1)

∂E1

)
E1=Ē1

=

(
∂lnΩ2(E2)

∂E2

)
E2=Ē2

(2.12)

but also (
∂lnΩ1(V1)

∂V1

)
V1=V̄1

=

(
∂lnΩ2(V2)

∂V2

)
V2=V̄2

(2.13)

Our conditions for equilibrium now take the form of an equality between the pair of (β, η)

η ≡
(

∂lnΩ(N, V, E)
∂V

)
N,E,V=V̄

(2.14)

Similarly, there might be exchanges between particles, while need another parameter ζ,

ζ ≡
(

∂lnΩ(N, V, E)
∂N

)
V,E,N=N̄

(2.15)

To determine the physical meaning of the parameters η and ζ, we make use of the thermodynamic identity.

dE = TdS − PdV + µdN (2.16)
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so

β =
1

kT

η =
P

kT

ζ = − µ

kT

(2.17)

From the macroscopic view, the equilibrium is reached when

T1 = T2

P1 = P2

µ1 = µ2

(2.18)

This is identical to the ones following from statistical considerations. The evaluations of P, µ, T indeed
requires that energy E be expressed as a function of N, V, E, this should, in principle be possible once S is
known.

For instance, (
∂S
∂E

)
N,V

=
1
T(

∂S
∂V

)
N,V

=
P
T(

∂S
∂N

)
N,V

=
−µ

T

(2.19)

The rest of thermodynamic quantities follow straightforwardly.

F = E − TS
G = F + PV = E − TS − PV = µN
H = E + PV = G + TS

(2.20)

CV = T(
∂S
∂T

)N,V = (
∂E
∂T

)N,V

CP = T(
∂S
∂T

)N,P = (
∂H
∂T

)N,P

(2.21)
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