Lecture 2: The Statistical Basis of Thermodynamics

2.1 Microstates and Macrostates

We consider a system composed of N identical particles confined to a space of V. The total energy E would be equal to the sum of the energies of the individual particles.

$$
\begin{equation*}
E=\sum_{i} n_{i} \epsilon_{i} \tag{2.1}
\end{equation*}
$$

The specification of the actual values of the parameters N, V, E then defines a macrostate of the system. At the molecular level, however, a large number of possibilities still exist because at that level there will be a large number of different ways to make the total state of N, V, E (think out arranging the coins with different sequence of head and tail). Each of the different ways specifies a microstate or complexion of the given system.

The actual number of all possible microstates (Ω) will be a function of N, V, E. In principle, it is from the magnitude of the number of Ω and from its dependence on the parameters N, V, E, that complete thermodynamics can be derived.

2.2 Multiplicity in Einstein Solids

N : Number of the oscillators.
q : Number of energy states.

$$
\begin{equation*}
\Omega(N, q)=\binom{q+N-1}{q}=\frac{(q+N-1)!}{q!(N-1)!} \tag{2.2}
\end{equation*}
$$

It can be simply proved as follows
q circles;
$N-1$ vertical lines;
how to arrange them?

Exercises

Calculate the multiplicity of an Einstein solid with 5 oscillators and [1,2,3,4,5] units of Energy.

q	$\Omega(5, q)$
1	
2	
3	
4	
5	

2.3 Contact between statistics and thermodynamics

Figure 2.1: A schematic of two physical systems in thermal contact.
Let's first figure out how Ω is related to the thermodynamic quantities. We consider two physical systems, A_{1} and A_{2}, which are separately in equilibrium. Let the macrostate of A_{1} be represented by the parameters N_{1}, V_{1} and E_{1} so that it has $\Omega_{1}\left(N_{1}, V_{1}, E_{1}\right)$ possible microstates, and the macrostate of A_{2} be represented by $\Omega_{2}\left(N_{2}, V_{2}, E_{2}\right)$. Can we derive some thermodynamic properties from $\Omega_{1}\left(N_{1}, V_{1}, E_{1}\right)$ and $\Omega_{2}\left(N_{2}, V_{2}, E_{2}\right)$?

Let's bring two systems into thermal contact. For simplicity, we only allow the heat exchange between the two, while N, V remain fixed. This means there could be some interchanges between E_{1} and E_{2}, however, it has to be restricted by the conservation law.

$$
\begin{equation*}
E=E_{1}+E_{2}=\text { const } \tag{2.3}
\end{equation*}
$$

From the microscopic view, the total number of microstates could be expressed as,

$$
\begin{equation*}
\Omega_{1}\left(E_{1}\right) \Omega_{2}\left(E_{2}\right)=\Omega_{1}\left(E_{1}\right) \Omega_{2}\left(E-E_{1}\right) \tag{2.4}
\end{equation*}
$$

When the system approaches to the equilibrium, what should be the value of $\overline{E_{1}}$. According to the 2nd law, the entropy should reach the maximum. Mathematically, we need to find $\overline{E_{1}}$ which satisfies,

$$
\begin{equation*}
\left(\frac{\partial \Omega_{1}\left(E_{1}\right)}{\partial E_{1}}\right)_{E_{1}=E_{1}} \Omega_{2}\left(E_{2}\right)+\left(\frac{\partial \Omega_{2}\left(E_{2}\right)}{\partial E_{2}}\right)_{E_{2}=\bar{E}_{2}} \frac{\partial E_{2}}{\partial E_{1}} \Omega_{1}\left(E_{1}\right)=0 \tag{2.5}
\end{equation*}
$$

Remember that $\Delta E_{1}=\Delta E_{2}$ at each time interval, therefore

$$
\begin{equation*}
\left(\frac{\partial \ln \Omega_{1}\left(E_{1}\right)}{\partial E_{1}}\right)_{E_{1}=\overline{E_{1}}}=\left(\frac{\partial \ln \Omega_{2}\left(E_{2}\right)}{\partial E_{2}}\right)_{E_{2}=\overline{E_{2}}} \tag{2.6}
\end{equation*}
$$

Thus, our condition for equilibrium reduces to the equality of parameter β_{1} and β_{2} :

$$
\begin{equation*}
\beta \equiv\left(\frac{\partial \ln \Omega(E)}{\partial E}\right)_{E=\bar{E}} \tag{2.7}
\end{equation*}
$$

or a more complete version as follows,

$$
\begin{equation*}
\beta \equiv\left(\frac{\partial \ln \Omega(N, V, E)}{\partial E}\right)_{N, V, E=\bar{E}} \tag{2.8}
\end{equation*}
$$

Therefore, we find when two systems are into thermal contact, the exchange of heat continues until the equilibrium E_{1}, E_{2} reach some values. This happens only when the respective values of β_{1} and β_{2} become equal. It is then natural to expect that the parameter β is somehow related to T. To determine this relationship, we recall the thermodynamic formula

$$
\begin{equation*}
\left(\frac{\partial S}{\partial E}\right)_{N, V}=\frac{1}{T} \tag{2.9}
\end{equation*}
$$

Comparing eq. 2.8 and 2.9 , we find

$$
\begin{equation*}
\left(\frac{\Delta S}{\Delta \ln \Omega}\right)=\frac{1}{\beta T}=\mathrm{const} \tag{2.10}
\end{equation*}
$$

This correspondence was firstly established by Boltzmann. It was Planck who first wrote the explicit formula

$$
\begin{equation*}
S=k \ln \Omega \tag{2.11}
\end{equation*}
$$

It means that the absolute value of the entropy of a given physical system in terms of the total number of microstates accessible to it conformity with the given macrostate, which provides a bridge between micro and macroscopic.

2.4 More complete contact

Let's continue to examine a more elaborate exchange between A_{1} and A_{2}. not only,

$$
\begin{equation*}
\left(\frac{\partial \ln \Omega_{1}\left(E_{1}\right)}{\partial E_{1}}\right)_{E_{1}=\overline{E_{1}}}=\left(\frac{\partial \ln \Omega_{2}\left(E_{2}\right)}{\partial E_{2}}\right)_{E_{2}=\overline{E_{2}}} \tag{2.12}
\end{equation*}
$$

but also

$$
\begin{equation*}
\left(\frac{\partial \ln \Omega_{1}\left(V_{1}\right)}{\partial V_{1}}\right)_{V_{1}=\bar{V}_{1}}=\left(\frac{\partial \ln \Omega_{2}\left(V_{2}\right)}{\partial V_{2}}\right)_{V_{2}=\bar{V}_{2}} \tag{2.13}
\end{equation*}
$$

Our conditions for equilibrium now take the form of an equality between the pair of (β, η)

$$
\begin{equation*}
\eta \equiv\left(\frac{\partial \ln \Omega(N, V, E)}{\partial V}\right)_{N, E, V=\bar{V}} \tag{2.14}
\end{equation*}
$$

Similarly, there might be exchanges between particles, while need another parameter ζ,

$$
\begin{equation*}
\zeta \equiv\left(\frac{\partial \ln \Omega(N, V, E)}{\partial N}\right)_{V, E, N=\bar{N}} \tag{2.15}
\end{equation*}
$$

To determine the physical meaning of the parameters η and ζ, we make use of the thermodynamic identity.

$$
\begin{equation*}
d E=T d S-P d V+\mu d N \tag{2.16}
\end{equation*}
$$

so

$$
\begin{align*}
& \beta=\frac{1}{k T} \\
& \eta=\frac{P}{k T} \tag{2.17}\\
& \zeta=-\frac{\mu}{k T}
\end{align*}
$$

From the macroscopic view, the equilibrium is reached when

$$
\begin{align*}
& T_{1}=T_{2} \\
& P_{1}=P_{2} \tag{2.18}\\
& \mu_{1}=\mu_{2}
\end{align*}
$$

This is identical to the ones following from statistical considerations. The evaluations of P, μ, T indeed requires that energy E be expressed as a function of N, V, E, this should, in principle be possible once S is known.

For instance,

$$
\begin{align*}
& \left(\frac{\partial S}{\partial E}\right)_{N, V}=\frac{1}{T} \\
& \left(\frac{\partial S}{\partial V}\right)_{N, V}=\frac{P}{T} \tag{2.19}\\
& \left(\frac{\partial S}{\partial N}\right)_{N, V}=\frac{-\mu}{T}
\end{align*}
$$

The rest of thermodynamic quantities follow straightforwardly.

$$
\begin{align*}
& F=E-T S \\
& G=F+P V=E-T S-P V=\mu N \tag{2.20}\\
& H=E+P V=G+T S \\
& \quad C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{N, V}=\left(\frac{\partial E}{\partial T}\right)_{N, V} \tag{2.21}\\
& \quad C_{P}=T\left(\frac{\partial S}{\partial T}\right)_{N, P}=\left(\frac{\partial H}{\partial T}\right)_{N, P}
\end{align*}
$$

