
Physics 467/667: Thermal Physics Spring 2019

Lecture 6: The Second Law and Entropy
Lecturer: Qiang Zhu Scribes: scribe-name1,2,3

6.1 Two Interacting Einstein Solids

In the previous section, we just learned how to count the Ω for an Einstein solid. Remember we are trying
to understand how heats are transferred, which essentially at least two solids. Let’s call the two solids A
and B separately.

Solid A

NA, qA

Solid B

NB, qB

Figure 6.1: Two interacting Einstein solids isolated from the rest of the universe.

Assuming that A and B are weakly coupled (just like what we did on the ideal gas model), the individual
energy units of the solids, qA and qB will change slowly. Under this assumption, the total number of
energies qtotal will be simple the sum of qA and qB.

To make life easier, let’s fix qtotal, what’s the multiplicity for any arbitrary qA? If we just count A,

Ω(A) =

(
qA + NA − 1

qA

)
, (6.1)

In the meantime, we also needs to consider B,

Ω(B) =
(

qB + NB − 1
qB

)
, qB = qtotal − qA. (6.2)

Of course, the total number follows
Ω(total) = Ω(A)Ω(B). (6.3)

Exercises
Write a table of qA, Ω(A), qB, Ω(B), Ω(total), when qA + qB = 5, NA=NB=6.
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q(A) Ω(A) q(B) Ω(B) Ω(total)
0
1
2
3
4
5

6.2 Stirling’s Approximation

To apply these formulas to large systems, we need a trick for evaluating factorials of large numbers. Here
is a trick called Stirling’s approximation,

N! ≈ NNe−N
√

2πN (6.4)

This can be roughly understood that N! is first approximated as NN , then averaged by (N/e)N ,

N! ≈ NNe−N (6.5)

A more elegant way to express N! is to use the so called Gamma function. Suppose you start with the
integral, ∫ ∞

0
e−axdx = 1/a (6.6)

and differentiate repeatedly with respect to a, you will eventually get∫ ∞

0
xne−axdx = n!a−(n+1) (6.7)

Starting with this equation, you are able to prove eq 6.4. From the above, you can get the logarithm as
follows

ln N! ≈ N ln N − N − 1/2 ln(2πN) (6.8)

When N is very large, we can safely remove the last term,

lnN! = NlnN − N (when N → ∞) (6.9)

Alternatively, you can solve it in this way,

ln N! = ln N + ln(N − 1) + ln(N − 2) + ...

≈
∫ N

0
ln xdx

= N ln N − N − 1/2 ln(2πN)

(6.10)

6.3 Computer Programming

1. Write a code to calculate Ω as a function of qA, when NA=[300, 600, 3000, 6000], NB=[200, 400, 2000,
4000], and q=100, plot them and try to find some tendency when N increases (hint: 4 plots).
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Figure 6.2: Ω as a function of N in two interacting Einstein solids.

2. Write a code to calculate the probability of Ω(qA), when NA=[300, 3000], NB=[200, 2000], for q=[100,
1000], plot them and try to explain the differences. (hint: 2 plots)

3. Write a code to show the comparison of Stirling approximation in eq.6.10 and 6.9

4. The Gamma function is defined as

Γ(n + 1) =
∫ ∞

0
xne−xdx, (6.11)

write a code to show the comparison of Γ(n + 1), n!, and
√

2πn(n/e)n in the range of [0,3.6]
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Figure 6.3: Probability distribution of Ω(N) in two interacting Einstein solids for different q values.
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Figure 6.4: The accuracy of Stirling’s approximation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
N

0

2

4

6

8

10

12

14

N!

Γ(n+ 1)√
2πn (n/e)n

Figure 6.5: Comparison between the Gamma function and Stirling’s approximation.
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