Lecture 6: The Second Law and Entropy

6.1 Two Interacting Einstein Solids

In the previous section, we just learned how to count the Ω for an Einstein solid. Remember we are trying to understand how heats are transferred, which essentially at least two solids. Let's call the two solids A and B separately.

Figure 6.1: Two interacting Einstein solids isolated from the rest of the universe.

Assuming that A and B are weakly coupled (just like what we did on the ideal gas model), the individual energy units of the solids, q_{A} and q_{B} will change slowly. Under this assumption, the total number of energies $q_{\text {total }}$ will be simple the sum of q_{A} and q_{B}.

To make life easier, let's fix $q_{\text {total }}$, what's the multiplicity for any arbitrary q_{A} ? If we just count A,

$$
\begin{equation*}
\Omega(A)=\binom{q_{A}+N_{A}-1}{q_{A}}, \tag{6.1}
\end{equation*}
$$

In the meantime, we also needs to consider B,

$$
\begin{equation*}
\Omega(B)=\binom{q_{B}+N_{B}-1}{q_{B}}, q_{B}=q_{\mathrm{total}}-q_{A} \tag{6.2}
\end{equation*}
$$

Of course, the total number follows

$$
\begin{equation*}
\Omega(\text { total })=\Omega(A) \Omega(B) \tag{6.3}
\end{equation*}
$$

Exercises

Write a table of $q_{A}, \Omega(A), q_{B}, \Omega(B), \Omega$ (total), when $q_{A}+q_{B}=5, N_{A}=N_{B}=6$.

$q(A)$	$\Omega(A)$	$q(B)$	$\Omega(B)$	$\Omega($ total $)$
0				
1				
2				
3				
4				
5				

6.2 Stirling's Approximation

To apply these formulas to large systems, we need a trick for evaluating factorials of large numbers. Here is a trick called Stirling's approximation,

$$
\begin{equation*}
N!\approx N^{N} e^{-N} \sqrt{2 \pi N} \tag{6.4}
\end{equation*}
$$

This can be roughly understood that N ! is first approximated as N^{N}, then averaged by $(N / e)^{N}$,

$$
\begin{equation*}
N!\approx N^{N} e^{-N} \tag{6.5}
\end{equation*}
$$

A more elegant way to express N ! is to use the so called Gamma function. Suppose you start with the integral,

$$
\begin{equation*}
\int_{0}^{\infty} e^{-a x} d x=1 / a \tag{6.6}
\end{equation*}
$$

and differentiate repeatedly with respect to a, you will eventually get

$$
\begin{equation*}
\int_{0}^{\infty} x^{n} e^{-a x} d x=n!a^{-(n+1)} \tag{6.7}
\end{equation*}
$$

Starting with this equation, you are able to prove eq 6.4. From the above, you can get the logarithm as follows

$$
\begin{equation*}
\ln N!\approx N \ln N-N-1 / 2 \ln (2 \pi N) \tag{6.8}
\end{equation*}
$$

When N is very large, we can safely remove the last term,

$$
\begin{equation*}
\ln N!=N \ln N-N \quad(\text { when } N \rightarrow \infty) \tag{6.9}
\end{equation*}
$$

Alternatively, you can solve it in this way,

$$
\begin{align*}
\ln N! & =\ln N+\ln (N-1)+\ln (N-2)+\ldots \\
& \approx \int_{0}^{N} \ln x d x \tag{6.10}\\
& =N \ln N-N-1 / 2 \ln (2 \pi N)
\end{align*}
$$

6.3 Computer Programming

1. Write a code to calculate Ω as a function of q_{A}, when $N_{A}=[300,600,3000,6000], N_{B}=[200,400,2000$, 4000], and $q=100$, plot them and try to find some tendency when N increases (hint: 4 plots).

Figure 6.2: Ω as a function of N in two interacting Einstein solids.
2. Write a code to calculate the probability of $\Omega\left(q_{A}\right)$, when $N_{A}=[300,3000], N_{B}=[200,2000]$, for $q=[100$, 1000], plot them and try to explain the differences. (hint: 2 plots)
3. Write a code to show the comparison of Stirling approximation in eq.6.10 and 6.9
4. The Gamma function is defined as

$$
\begin{equation*}
\Gamma(n+1)=\int_{0}^{\infty} x^{n} e^{-x} d x \tag{6.11}
\end{equation*}
$$

write a code to show the comparison of $\Gamma(n+1), n!$, and $\sqrt{2 \pi n}(n / e)^{n}$ in the range of $[0,3.6]$

Figure 6.3: Probability distribution of $\Omega(N)$ in two interacting Einstein solids for different q values.

Figure 6.4: The accuracy of Stirling's approximation.

Figure 6.5: Comparison between the Gamma function and Stirling's approximation.

