Lecture 7: The Second Law and Entropy

7.1 Calculate Ω for an Einstein Solid

Remember we have done some computer programming for two-state systems. A general trend is that it approaches a large number $N, \Omega(N)$ tends to be localized. If we treat the histogram of $\Omega(N)$ as a continues function (true when N is very large), it looks like a very smooth curve and $\Omega(N)$ follows some kind of distribution.

Now let's try to figure out what it is, by taking a Einstein solid as an example.

$$
\begin{equation*}
\Omega(N, q)=\binom{q+N-1}{q}=\frac{(q+N-1)!}{q!(N-1)!} \tag{7.1}
\end{equation*}
$$

In reality, there are always many more energy units (q) than oscillators (N), so we assume $q \gg N$.
To make it easier, let's just remove -1 in eq. 7.1,

$$
\begin{align*}
\ln \Omega & =\ln \left(\frac{(q+N)!}{q!N!}\right) \\
& =\ln (q+N)!-\ln q!-\ln N! \tag{7.2}\\
& \approx(q+N) \ln (q+N)-(q+N)-q \ln q+q-N \ln N+N \\
& =(q+N) \ln (q+N)-q \ln q-N \ln N
\end{align*}
$$

Remember we have the assumption of $q \gg N$, namely $(N / q \rightarrow 0)$

$$
\begin{equation*}
\ln (q+N)=\ln \left(q\left(1+\frac{N}{q}\right)\right) \approx \ln q+\frac{N}{q} \tag{7.3}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\ln \Omega \approx N \ln \frac{q}{N}+N+\frac{N^{2}}{q} \approx N \ln \frac{q}{N}+N \tag{7.4}
\end{equation*}
$$

If we remove the logarithm sign,

$$
\begin{equation*}
\Omega(N, q) \approx\left(\frac{e q}{N}\right)^{N} \tag{7.5}
\end{equation*}
$$

7.2 Calculate Ω for two Einstein Solids

Naturally, we now know the general form of two Einstein Solids model,

$$
\begin{equation*}
\Omega\left(N_{A}, q_{A}, N_{B}, q_{B}\right)=\left(\frac{e q_{A}}{N_{A}}\right)^{N_{A}}\left(\frac{e q_{B}}{N_{B}}\right)^{N_{B}} \tag{7.6}
\end{equation*}
$$

For simplicity, let make $N_{A}=N_{B}=N$, then

$$
\begin{equation*}
\Omega\left(N, q_{A}, q_{B}\right)=\left(\frac{e}{N}\right)^{2 N}\left(q_{A} q_{B}\right)^{N} \tag{7.7}
\end{equation*}
$$

Based on what we plot in the homework, we know that Ω reaches its maximum value at $q_{A}=q_{B}=q / 2$,

$$
\begin{equation*}
\Omega_{\max }=\left(\frac{e}{N}\right)^{2 N}(q / 2)^{2 N} \tag{7.8}
\end{equation*}
$$

Now let's try to calculate the points near $q / 2$, say,

$$
\begin{equation*}
q_{A}=q / 2+x, \quad q_{B}=q / 2-x \tag{7.9}
\end{equation*}
$$

Using eq. 7.7,

$$
\begin{equation*}
\Omega(N, q, x)=\left(\frac{e}{N}\right)^{2 N}\left[\left(\frac{q}{2}\right)^{2}-x^{2}\right]^{N} \tag{7.10}
\end{equation*}
$$

To simplify it, we get

$$
\begin{align*}
\ln \left[\left(\frac{q}{2}\right)^{2}-x^{2}\right]^{N} & =N \ln \left[\left(\frac{q}{2}\right)^{2}-x^{2}\right] \\
& =N \ln \left[\left(\frac{q}{2}\right)^{2}\left(1-\left(\frac{2 x}{q}\right)^{2}\right)\right] \tag{7.11}\\
& =N\left[\ln \left(\frac{q}{2}\right)^{2}+\ln \left(1-\left(\frac{2 x}{q}\right)^{2}\right)\right] \\
& \approx N\left[\ln \left(\frac{q}{2}\right)^{2}-\left(\frac{2 x}{q}\right)^{2}\right]
\end{align*}
$$

hence we have

$$
\begin{equation*}
\Omega=\Omega_{\max } \cdot e^{-N(2 x / q)^{2}} \tag{7.12}
\end{equation*}
$$

This is a typical Gaussian function. A standard version is as follows,

$$
\begin{equation*}
f\left(x \mid \mu, \delta^{2}\right)=\frac{1}{\sqrt{2 \delta^{2}} \pi} e^{\frac{-(x-\mu)^{2}}{2 \delta^{2}}} \tag{7.13}
\end{equation*}
$$

1. symmetric
2. Gaussian width

The multiplicity falls off to 1 /e of its maximum when

$$
\begin{equation*}
N\left(\frac{2 x}{q}\right)^{2}=1 \quad \text { or } \quad x=\frac{q}{2 \sqrt{N}} \tag{7.14}
\end{equation*}
$$

Let's plug in some number, say $N=10^{20}$. This results tell us, when two Einstein solids are in thermodynamical equilibrium, any random fluctuation will be not measurable. The most-likely macrostates are very localized.

Exercises

1. Problem 2.20.
2. Problem 2.23

7.3 Ideal Gas

Suppose we have a single gas atom (Ar), with a kinetic energy U in a container of volume V, what is its corresponding Ω ? Obviously, the possible microstate is proportional to V . In principle, the atom can stay at any place of V. Also, each microstate can be represented as a vector, since it has velocity (more precisely Momentum). Therefore

$$
\begin{equation*}
\Omega \approx V \cdot V_{p} \tag{7.15}
\end{equation*}
$$

It appears that both V and V_{p} somehow relate to very large numbers, but would their product go to infinity? Fortunately, we have the famous Heisenberg uncertainty principle:

$$
\begin{equation*}
\Delta x \Delta p_{x}=h \tag{7.16}
\end{equation*}
$$

For a one-dimensional chain, we define L as the length in real space, L_{p} as the length in momentum space,

$$
\begin{equation*}
\Omega_{1 D}=\frac{L}{\Delta x} \frac{L_{p}}{\Delta p_{x}}=\frac{L L_{p}}{h} \tag{7.17}
\end{equation*}
$$

Therefore, its 3D version is,

$$
\begin{equation*}
\Omega_{1}=\frac{V V_{p}}{h^{3}} \tag{7.18}
\end{equation*}
$$

Accordingly, the multiplicity function for an ideal gas of two molecules should be

$$
\begin{equation*}
\Omega_{2}=\frac{1}{2} \frac{V^{2}}{h^{6}} \times \text { area of } P \text { hypersphere } \tag{7.19}
\end{equation*}
$$

if the two molecules are indistinguishable. The general form for N should be

$$
\begin{equation*}
\Omega_{N}=\frac{1}{N!} \frac{V^{N}}{h^{3 N}} \times \text { area of } P \text { hypersphere. } \tag{7.20}
\end{equation*}
$$

For $N=1$, how to calculate the area? Since U depends on the momentum by

$$
\begin{gather*}
U=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right) \tag{7.21}\\
p_{x}^{2}+p_{y}^{2}+p_{z}^{2}=2 m U \tag{7.22}
\end{gather*}
$$

So the momentum space is the surface of a sphere with radius $\sqrt{2 m U}$, namely,

$$
\begin{array}{rlrl}
\text { area } & =2 & & (d=1) \\
& =2 \pi r & & (d=2) \\
& =4 \pi r^{2} & (d=3) \\
& =\ldots & \tag{7.23}\\
& =\ldots & \\
& =\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} r^{d-1} & & (d \text { in general })
\end{array}
$$

Therefore, the general Ω is

$$
\begin{gather*}
\Omega_{N}=\frac{1}{N!} \frac{V^{N}}{h^{3 N}} \frac{2 \pi^{3 N / 2}}{(3 N / 2-1)!} \sqrt{2 m U}^{3 N-1} \tag{7.24}\\
\Omega(U, V, N)=f(N) V^{N} U^{3 N / 2} \tag{7.25}
\end{gather*}
$$

where $f(N)$ is a complicated function of N.

For two interacting gases,

$$
\begin{equation*}
\Omega(U, V, N)=[f(N)]^{2}\left(V_{A} V_{B}\right)^{N}\left(U_{A} U_{B}\right)^{3 N / 2} \tag{7.26}
\end{equation*}
$$

7.4 Appendix: Area of high-dimensional Hypersphere

For a d-dimensional hypersphere with a radius of r, we can solve it iteratively. When $d=1, A(r)=2, d=2$, $A(r)=2 \pi r$

$$
\begin{equation*}
A_{3}(r)=\int_{0}^{\pi} A_{2}(r \sin \theta) r d \theta=2 \pi r^{2} \int_{0}^{\pi} d \theta=4 \pi r^{2} \tag{7.27}
\end{equation*}
$$

Consequently, we can keep doing this

$$
\begin{align*}
A_{d}(r) & =\int_{0}^{\pi} A_{d-1}(r \sin (\theta)) r d \theta \\
& =\int_{0}^{\pi} \frac{2 \pi^{(d-1) / 2}}{\Gamma\left(\frac{d-1}{2}\right)}(r \sin \theta)^{d-2} r d \theta \tag{7.28}\\
& =\frac{2 \pi^{(d-1) / 2}}{\Gamma\left(\frac{d-1}{2}\right)} r^{d-1} \int_{0}^{\pi}(\sin \theta)^{d-2} d \theta \\
& \int_{0}^{\pi}(\sin \theta)^{n} d \theta=\frac{\sqrt{\pi} \Gamma\left(\frac{n+2}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)} \tag{7.29}
\end{align*}
$$

so

$$
\begin{equation*}
A_{d}(r)=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} r^{d-1} \tag{7.30}
\end{equation*}
$$

