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Lecture 7: The Second Law and Entropy
Lecturer: Qiang Zhu Scribes: scribe-name1,2,3

7.1 Calculate Ω for an Einstein Solid

Remember we have done some computer programming for two-state systems. A general trend is that it
approaches a large number N, Ω(N) tends to be localized. If we treat the histogram of Ω(N) as a continues
function (true when N is very large), it looks like a very smooth curve and Ω(N) follows some kind of
distribution.

Now let’s try to figure out what it is, by taking a Einstein solid as an example.

Ω(N, q) =
(

q + N − 1
q

)
=

(q + N − 1)!
q!(N − 1)!

(7.1)

In reality, there are always many more energy units (q) than oscillators (N), so we assume q� N.

To make it easier, let’s just remove -1 in eq. 7.1,

ln Ω = ln
(
(q + N)!

q!N!

)
= ln(q + N)!− lnq!− lnN!
≈ (q + N)ln(q + N)− (q + N)− qlnq + q− NlnN + N
= (q + N)ln(q + N)− qlnq− NlnN

(7.2)

Remember we have the assumption of q� N, namely (N/q→ 0)

ln(q + N) = ln
(

q(1 +
N
q
)

)
≈ ln q +

N
q

(7.3)

Therefore, we have

ln Ω ≈ Nln
q
N

+ N +
N2

q
≈ Nln

q
N

+ N (7.4)

If we remove the logarithm sign,

Ω(N, q) ≈ (
eq
N
)N (7.5)

7.2 Calculate Ω for two Einstein Solids

Naturally, we now know the general form of two Einstein Solids model,

Ω(NA, qA, NB, qB) = (
eqA
NA

)NA(
eqB
NB

)NB (7.6)
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For simplicity, let make NA = NB = N, then

Ω(N, qA, qB) = (
e
N
)2N(qAqB)

N (7.7)

Based on what we plot in the homework, we know that Ω reaches its maximum value at qA = qB = q/2,

Ωmax = (
e
N
)2N(q/2)2N (7.8)

Now let’s try to calculate the points near q/2, say,

qA = q/2 + x, qB = q/2− x. (7.9)

Using eq. 7.7,

Ω(N, q, x) = (
e
N
)2N
[
(

q
2
)2 − x2

]N

. (7.10)

To simplify it, we get

ln
[(

q
2

)2

− x2
]N

= N ln
[(

q
2

)2

− x2
]

= N ln
[(

q
2

)2

(1−
(

2x
q

)2

)

]
= N

[
ln
(

q
2

)2

+ ln
(

1−
(

2x
q

)2)]
≈ N

[
ln
(

q
2

)2

−
(

2x
q

)2]
(7.11)

hence we have

Ω = Ωmax · e−N(2x/q)2
(7.12)

This is a typical Gaussian function. A standard version is as follows,

f (x|µ, δ2) =
1√

2δ2π
e
−(x−µ)2

2δ2 . (7.13)
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µ + δµ− δ

f (x)

x

1. symmetric

2. Gaussian width

The multiplicity falls off to 1/e of its maximum when

N(
2x
q
)2 = 1 or x =

q
2
√

N
(7.14)

Let’s plug in some number, say N=1020. This results tell us, when two Einstein solids are in thermody-
namical equilibrium, any random fluctuation will be not measurable. The most-likely macrostates are very
localized.
Exercises

1. Problem 2.20.

2. Problem 2.23

7.3 Ideal Gas

Suppose we have a single gas atom (Ar), with a kinetic energy U in a container of volume V, what is its
corresponding Ω? Obviously, the possible microstate is proportional to V. In principle, the atom can stay
at any place of V. Also, each microstate can be represented as a vector, since it has velocity (more precisely
Momentum). Therefore

Ω ≈ V ·Vp (7.15)



7-4 Lecture 7: The Second Law and Entropy

It appears that both V and Vp somehow relate to very large numbers, but would their product go to infinity?
Fortunately, we have the famous Heisenberg uncertainty principle:

∆x∆px = h. (7.16)

For a one-dimensional chain, we define L as the length in real space, Lp as the length in momentum space,

Ω1D =
L

∆x
Lp

∆px
=

LLp

h
. (7.17)

Therefore, its 3D version is,

Ω1 =
VVp

h3 . (7.18)

Accordingly, the multiplicity function for an ideal gas of two molecules should be

Ω2 =
1
2

V2

h6 × area of P hypersphere (7.19)

if the two molecules are indistinguishable. The general form for N should be

ΩN =
1

N!
VN

h3N × area of P hypersphere. (7.20)

For N=1, how to calculate the area? Since U depends on the momentum by

U =
1
2

m(v2
x + v2

y + v2
z) =

1
2m

(p2
x + p2

y + p2
z) (7.21)

p2
x + p2

y + p2
z = 2mU (7.22)

So the momentum space is the surface of a sphere with radius
√

2mU, namely,

area =2 (d=1)
=2πr (d=2)

=4πr2 (d=3)
=....
=....

=
2πd/2

Γ(d/2)
rd−1 (d in general)

(7.23)

Therefore, the general Ω is

ΩN =
1

N!
VN

h3N
2π3N/2

(3N/2− 1)!

√
2mU

3N−1
. (7.24)

Ω(U, V, N) = f (N)VNU3N/2 (7.25)

where f (N) is a complicated function of N.

For two interacting gases,
Ω(U, V, N) = [ f (N)]2(VAVB)

N(UAUB)
3N/2 (7.26)
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7.4 Appendix: Area of high-dimensional Hypersphere

For a d-dimensional hypersphere with a radius of r, we can solve it iteratively. When d=1, A(r)=2, d=2,
A(r) = 2πr

A3(r) =
∫ π

0
A2(r sin θ)rdθ = 2πr2

∫ π

0
dθ = 4πr2. (7.27)

Consequently, we can keep doing this

Ad(r) =
∫ π

0
Ad−1(r sin(θ))rdθ

=
∫ π

0

2π(d−1)/2

Γ( d−1
2 )

(r sin θ)d−2rdθ

=
2π(d−1)/2

Γ( d−1
2 )

rd−1
∫ π

0
(sin θ)d−2dθ

(7.28)

∫ π

0
(sin θ)ndθ =

√
πΓ( n+2

2 )

Γ( n+1
2 )

(7.29)

so

Ad(r) =
2πd/2

Γ(d/2)
rd−1 (7.30)
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