Lecture 10: Entropy and Pressure

Lecturer: Qiang Zhu

10.1 Mechanical Equilibrium and Pressure

In the last lecture, we just learned the relation between S and T, is there any analogy between S and P ?

Figure 10.1: A schematic pressure flow between two gases.
Again, we start from the condition when the system reaches its equilibrium,

$$
\begin{equation*}
\frac{\partial S_{\text {total }}}{\partial U_{A}}=0 \quad \rightarrow \quad \frac{\partial S_{\text {total }}}{\partial V_{A}}=0 \tag{10.1}
\end{equation*}
$$

as S is a function of U and V.
We already applied the 1st condition in the previous lecture. How about the 2nd condition?

$$
\begin{equation*}
\frac{\partial S_{A}}{\partial V_{A}}+\frac{\partial S_{B}}{\partial V_{A}}=0 \quad \rightarrow \quad \frac{\partial S_{A}}{\partial V_{A}}=\frac{\partial S_{B}}{\partial V_{B}} \tag{10.2}
\end{equation*}
$$

What's the physical meaning of $\partial S_{A} / \partial V_{A}$?
If we dig a bit on the units, we will find $\partial S_{A} / \partial V_{A}$ has a unit of $\mathrm{N} \cdot \mathrm{m} / \mathrm{K}$, about P / T hence we guess

$$
\begin{equation*}
\frac{P}{T}=\left(\frac{\partial S}{\partial V}\right)_{U, N} \quad \rightarrow \quad P=T\left(\frac{\partial S}{\partial V}\right)_{U, N} \tag{10.3}
\end{equation*}
$$

Recall that we know how to calculate S,

$$
\begin{gather*}
S=N k \ln V+3 / 2 N k \ln U-N k \ln (f(N)) \tag{10.4}\\
P=T\left(\frac{\partial S}{\partial V}\right)=\frac{N k T}{V} \tag{10.5}\\
P V=N k T \tag{10.6}
\end{gather*}
$$

Again, we proved the ideal gas law.

10.2 Thermodynamic Identity

From the above sections, it seems that ΔS can be divided into two parts,

1. ΔU, to account for the heat flow
2. ΔV, to account for the pressure flow

Let's say,

$$
\begin{equation*}
\Delta S=\left(\frac{\Delta S}{\Delta U}\right) \Delta U+\left(\frac{\Delta S}{\Delta V}\right) \Delta V \tag{10.7}
\end{equation*}
$$

Suppose each step is very small, we use

$$
\begin{gather*}
d S=\left(\frac{\partial S}{\partial U}\right) d U+\left(\frac{\partial S}{\partial V}\right) d V \tag{10.8}\\
d S=\frac{d U}{T}+\frac{P d V}{T} \tag{10.9}\\
T d S=d U+P d V \tag{10.10}\\
d U=T d S-P d V \tag{10.11}
\end{gather*}
$$

This is the Thermodynamic Identity. If you compare it with the 1st law, it just substitutes TdS with Q, which is actually the old definition of entropy.

1. $\Delta U=0, T d S=P d V$
2. $\Delta V=0, d U=T d S$

Exercise Under constant entropy

$$
\begin{gather*}
\left(\frac{\partial S}{\partial U}\right) d U+\left(\frac{\partial S}{\partial V}\right) d V=0 \tag{10.12}\\
d U=-P d V \tag{10.13}
\end{gather*}
$$

isentropic $=$ quasistatic + adiabatic

$$
\begin{equation*}
\Delta S=S_{f}-S_{i}=\int_{T_{i}}^{T_{f}} \frac{C_{P}}{T} d T \tag{10.14}
\end{equation*}
$$

$S(300 K)=S(0 K)+C_{P} \int_{0}^{300} \frac{1}{T} d T=5.8+3.5^{*} 8.31^{*} \ln (300)=173.89 \mathrm{~J} / \mathrm{K}$.
This value looks much smaller than the reference value in the appendix ($197.67 \mathrm{~J} / \mathrm{K}$), because a constant volume assumption is not realistic. A more realistic solution is

$$
\begin{equation*}
\Delta S=C_{V} \ln \frac{P_{B}}{P_{A}}+C_{P} \ln \frac{V_{B}}{V_{A}} \tag{10.15}
\end{equation*}
$$

when you consider $Q=\Delta U-W$.

$$
\begin{array}{ll}
\Delta S=\frac{Q}{T} & \text { quasistatic } \\
\Delta S>\frac{Q}{T} & \text { in practice } \tag{10.17}
\end{array}
$$

1. Very faste compression
2. free expansion

10.3 Homework

Problem 3.5, 3.8, 3.11, 3.14, 3.16, 3.27, 3.30, 3.31, 3.32, 3.33

