
1

1.5em 0pt

2 Atomistic Simulation in Materials Modeling

Atomistic Simulation in Materials Modeling

Instructor: Qiang Zhu

August 6, 2025

2 Atomistic Simulation in Materials Modeling

Contents

1 Simulating the NVE Ensemble 13
1.1 Early History of Computer Simulation 13
1.2 Molecular Dynamics Simulation . 13
1.3 A First MD Simulation under the NVE Ensemble 14

1.3.1 The MD Workflow . 14
1.3.2 Initialization . 15
1.3.3 Interatomic Interaction: The Lennard-Jones Potential 18
1.3.4 Integration . 20

1.4 Code Implementation and Testing . 21
1.4.1 Problem Setup . 21
1.4.2 The Python Code for NVE MD Simulation 21

1.5 Summary . 26

2 Thermostat in the NVT Ensemble 27
2.1 Motivation . 27
2.2 Extension to NVT by Allowing Heat Exchange 27
2.3 Intuitive Thermostats . 28

2.3.1 The Anderson Thermostat . 28
2.3.2 The Langevin Thermostat . 29
2.3.3 Comparison . 31

2.4 Statistical Physics Perspective . 31
2.5 Partition Function of the Extended System 33
2.6 The Nose-Hoover Thermostat . 35
2.7 Code Implementation . 36
2.8 Summary . 39

3 Barostat in the NPT ensemble 41
3.1 Motivation . 41
3.2 The Berendsen Barostat . 42
3.3 The Parrinello-Rahman Barostat . 44
3.4 NPT Code Implementation . 46
3.5 Summary . 51

4 MD Simulation with LAMMPS 53
4.1 Introduction to LAMMPS . 53
4.2 Why is LAMMPS Efficient? . 53
4.3 Input and Output Files . 54

4.3.1 LAMMPS Input Files . 54

3

4 Atomistic Simulation in Materials Modeling

4.3.2 LAMMPS Output Files . 55
4.4 Simulation Process . 55
4.5 Post-Processing . 55
4.6 Running LAMMPS on HPC . 56
4.7 MD simulations of Argon via LAMMPS 56
4.8 Summary and Further Tasks . 58

5 MD Structural Characterization 59
5.1 MD Trajectory Visualization . 59
5.2 Radial Distribution Function . 60

5.2.1 Physical Meaning and Applications 60
5.2.2 Computation of RDF . 61

5.3 Vibration Spectrum . 62
5.3.1 Vibration Frequency of a Single Harmonic Oscillator 62
5.3.2 Python Simulation of Harmonic Oscillators 63
5.3.3 Many oscillators . 66

5.4 LAMMPS Simulation of RDF and VDOS 67
5.4.1 LAMMPS Setup . 67
5.4.2 Plotting RDF, VACF and VDOS 68

5.5 Summary . 72

6 Transport Processes 73
6.1 Diffusion . 73
6.2 The Green-Kubo Relation . 75

6.2.1 Alternative Expression of MSD 75
6.2.2 The General Green-Kubo Relation 75
6.2.3 Thermal Conductivity . 76
6.2.4 Transport Properties from Equilibrium MD 77

6.3 LAMMPS Calculation and Analysis . 77
6.3.1 LAMMPS Setup . 77
6.3.2 Results Analysis . 80

6.4 Summary . 82

7 Enhanced Sampling with Metadynamics 83
7.1 What is Metadynamics? . 83
7.2 MD and Metadynamics in an 1D Potential Well 84
7.3 How does Metadynamics Work? . 87
7.4 Choice of CVs . 88
7.5 Well-Tempered Metadynamics . 88
7.6 Advantages of Well-Tempered Metadynamics 89
7.7 Further Discussions . 89

8 Introduction to Density Functional Theory 91
8.1 Schrödinger Equation . 91
8.2 The Single-Electron System . 92

8.2.1 Kinetic Energy Operator . 92
8.2.2 Solution of a 1D System . 92
8.2.3 Solution of a 3D System . 94

8.3 Density Functional Theory for Many-Electrons 96

CONTENTS 5

8.3.1 The Kohn and Hohenberg Theorems 97

8.3.2 The Kohn-Sham Equations . 97

8.3.3 Effective Potential in Kohn-Sham Equations 98

8.3.4 Iterative Update of Electron Density 100

8.3.5 Practical Workflow . 100

8.4 Summary . 101

9 DFT Simulation of the Hydrogen Molecule 103

9.1 Basic Setup . 103

9.2 Effective Potentials . 104

9.2.1 External Potential . 104

9.2.2 Hartree Potential and Energy . 104

9.2.3 Exchange and Correlation . 104

9.3 Python Implementation . 105

9.4 Physical Interpretation . 108

9.5 Summary . 110

10 Efficient DFT via the Localized Basis Set 111

10.1 The Slater-type Orbital Basis Set . 111

10.1.1 Numerical Behaviors . 112

10.1.2 Limitations . 113

10.2 Gaussian-type orbitals . 114

10.2.1 Linear Combination of Multiple Gaussian 114

10.3 Other flavors of Basis Sets . 115

10.4 Mathematical Properties of Gaussians . 115

10.4.1 Integral of Single Gaussian . 116

10.4.2 Integral of Gaussian Product . 116

10.4.3 Inverse R integral and the Boys Function 117

10.4.4 Two-electron Integral . 118

10.5 Solving the Hydrogen Molecule with STO-3G 119

10.5.1 STO-3G basis for a H2 molecule 119

10.5.2 Density Matrix and Electron Density 119

10.5.3 Overlap Matrix . 120

10.5.4 Kinetic Energy . 120

10.5.5 External Potential . 121

10.5.6 Hartree Potential . 121

10.5.7 XC potential . 122

10.5.8 Orthogonalization and SCF . 122

10.6 PySCF Exercise in simulating H2 . 123

10.7 Python Code Implementation from the Scratch 124

10.7.1 Initial Planning . 124

10.7.2 The GTO class . 125

10.7.3 Hartree Potential . 129

10.7.4 LDA Exchange . 131

10.7.5 SCF class . 132

10.8 Conclusions . 134

6 Atomistic Simulation in Materials Modeling

11 Electronic Structure of the Periodic System 137
11.1 The Bloch Theorem . 137
11.2 The Tight Binding Model . 138

11.2.1 Solution of 1D monoatomic crystal 138
11.2.2 Solution of 1D diatomic crystal 141
11.2.3 Remarks on the Tight Binding Model 143

11.3 The Plane Wave Model . 143
11.3.1 Using Plane Waves as the Basis Set 144
11.3.2 The Numerical Solution . 144

11.4 Extension to 3D system . 145
11.4.1 Reciprocal Lattice in 3D . 146
11.4.2 3D Hamiltonian on the Plane Wave Basis 146

11.5 Energy Bands and Brillouin Zone . 146
11.5.1 Energy Bands . 146
11.5.2 The Brillouin Zone . 147
11.5.3 Practical Band Structure Visualization 149

11.6 Empirical Pseudopotential Method . 149
11.6.1 Structure Factor of Representative Structures 151
11.6.2 Application to the Diamond Crystal 152
11.6.3 Model Hamiltonian . 154
11.6.4 Python Implementation . 154

11.7 Summary . 157

12 DFT Simulation of Crystals with Plane Waves 159
12.1 Pseudopotentials . 159

12.1.1 Norm-Conserving Pseudopotentials 159
12.1.2 The Goedecker-Teter-Hutter Pseudopotential 160
12.1.3 Pseudopotential at the reciprocal space 161
12.1.4 Expression of Structural Local Potentials 162
12.1.5 The Example of Si’s GTH potential 162

12.2 Brillouin Zone Sampling . 163
12.3 Hamiltonian on the Plane Wave Basis . 164

12.3.1 Kinetic Operator and Energy . 165
12.3.2 Pseudopotential and energy . 165
12.3.3 Hartree Potential and Energy . 165
12.3.4 Exchange and Correlation . 166
12.3.5 Conversion between Real and Reciprocal Space 167
12.3.6 Nuclear–Nuclear Interaction . 167

12.4 Diagonalization . 167
12.4.1 The Davidson Approach . 167
12.4.2 Alternative Approaches . 168

12.5 Self-Consistent Field . 168
12.6 A Plane Wave DFT Code for Silicon . 169

12.6.1 Initial Planning . 169
12.6.2 Structure and Plane Wave Setup 170
12.6.3 Pseudopotential Setup . 175
12.6.4 The Hamiltonian Class . 181
12.6.5 Test Run and Results Analysis 187

CONTENTS 7

12.6.6 Limitation and Possible Extensions 190

12.7 Forces and Stress Tensors . 191

12.7.1 Forces on Atoms . 191

12.7.2 Stress Tensors . 192

12.8 Summary . 192

13 Phonon Calculation 193

13.1 A Simple Spring . 193

13.2 The 1D Infinite Monoatomic Chain . 194

13.2.1 Solution . 194

13.2.2 Choice of q for Infinite and Finite systems 195

13.2.3 Physical Insights . 196

13.3 The 1D Diatomic Chain Model . 197

13.3.1 Equation of Motions . 197

13.3.2 Solutions . 197

13.3.3 Dispersion Relation and Mode Analysis 199

13.3.4 The Dynamical Matrix Approach 201

13.4 Extension to Realistic Systems . 201

13.4.1 Revisiting the Diatomic Chain Model 203

13.4.2 Special Case at q=0 . 204

13.4.3 Application to the 3D System . 205

13.4.4 Phonon Density of States . 205

13.5 Application to FCC Argon . 206

13.5.1 System Setup . 206

13.5.2 From Force Constants to Dynamical Matrix 206

13.6 Python Implementation . 208

13.7 Summary and Outlook . 212

14 Representing Local Atomic Environment 215

14.1 Orientational Order Parameter . 215

14.1.1 Orientational Order in a 2D System 215

14.1.2 Extension to 3D: Neighbor Density Function 216

14.1.3 Expansion on the Spherical Harmonics 216

14.1.4 Rotation-Invariant Parameters . 217

14.1.5 Applications and Limitations . 218

14.2 Manybody descriptors . 218

14.2.1 Radial Dependent Power Spectrum Descriptor 218

14.2.2 Bispectrum on 4D Hyperspace . 220

14.2.3 Atomic Cluster Expansion . 221

14.3 Code Implementation . 224

14.3.1 Reference environments . 224

14.3.2 The Bond Order Parameters . 224

14.3.3 The Powerspectrum Descriptor 224

14.3.4 The ACE Descriptor . 224

14.4 Applications . 224

14.5 Conclusion and Further Discussions . 225

8 Atomistic Simulation in Materials Modeling

A Linear Algebra and Python Implementation 227
A.1 Vector and Matrix . 227
A.2 Norm, Determinant and Inverse . 227
A.3 Multiplications . 228
A.4 Inner and Outer Product . 228
A.5 Dirac Notation . 228
A.6 Eigenvalue Problem . 228
A.7 Numerical Computation in Python . 229
A.8 Advanced Usage Python . 229

B Spherical Harmonics 231
B.1 Mathematical Definition . 231
B.2 Examples of Real Spherical Harmonics 232
B.3 The Real Valued Spherical Harmonics . 232
B.4 Calculation with Python . 232

C Ewald Summation 235
C.1 Motivation . 235
C.2 Decomposition of 1/r . 235
C.3 Total Energy and Its Correction . 237
C.4 Practical Setting of Parameters . 239
C.5 Python Ewald Simulation for a Silicon Crystal 239
C.6 Particle Mesh Ewald Summation . 241

D Wigner-D matrix and Clebsch-Gordan Coefficients 243
D.1 Introduction . 243
D.2 Wigner-D matrix . 243

D.2.1 Properties of the Wigner-D Matrix 243
D.3 Clebsch-Gordan Coefficients . 244
D.4 Python Computation . 244

E List of Popular Codes and Tools 245
E.1 DFT packages . 245
E.2 Classical MD packages . 246
E.3 Tight-binding Packages . 246
E.4 Phonon Packages . 246
E.5 Visualization Packages . 247
E.6 Tools for Structure Manipulation and Analysis 247
E.7 Online Database . 247
E.8 Miscellaneous Resources . 248

Preface

This book was originally created based on a graduate course that I taught at the Uni-
versity of North Carolina at Charlotte beginning in Fall 2024. In that course, I aim
to give engineering students an introduction to modern atomistic computer simulation
techniques. It primarily focuses on two approaches: molecular dynamics (MD) and elec-
tronic structure calculation based on density functional theory (DFT). Assuming that
most engineering students do not have the necessary background in solid state physics,
computational chemistry and statistical mechanics, I expect that students, after taking
this course, can understand the physics behind each computational model and know how
to apply these techniques to study real materials and their accompanying processes and
phenomena.

The major difference compared to other available books or lecture notes is the hands-
on, practical approach to learning through coding and simulation. For each technique
covered, I have crafted a series of carefully designed examples - from simulating liquid
argon with MD to calculating the electronic structure of H2 molecules, silicon crystal
with DFT - that students implement themselves using relatively simple Python code.
Each chapter is accompanied by an interactive Python Jupyter Notebook that runs ei-
ther on Google Colab or locally, allowing students to experiment with the code, modify
parameters, and observe the results in real-time. These hands-on exercises typically take
under 20 minutes to complete, making them ideal for reinforcing theoretical concepts
through practical implementation. This approach ensures students not only understand
the underlying theory but gain direct experience implementing these methods, preparing
them to tackle real-world materials science challenges using modern high-performance
computing codes.

How to Use This Book?
This textbook is organized into a progressive learning path. For beginners in atomistic
simulation, I recommend first reviewing the essential mathematical concepts (primarily
calculus and linear algebra) and their Python implementation in Appendix A.

The core content begins with molecular dynamics simulation (Chapters 1-7), cov-
ering fundamental concepts and advancing to enhanced sampling techniques like metady-
namics. It begins by introducing Molecular Dynamics simulation with the foundational
NVE ensemble (constant number of particles, volume, and energy) in Chapter 1, using the
example of liquid Argon described by the Lennard-Jones potential. Essential aspects of
the MD workflow are explained, including initialization of positions and velocities, force
calculation, and integration using the Velocity Verlet algorithm. Chapter 2 advances
the simulation capabilities by introducing thermostats for controlling temperature and
simulating systems in the NVT ensemble (constant N , V , and T), discussing methods
like the Anderson and Langevin thermostats. Pressure control is added in Chapter 3
with the introduction of barostats for the NPT ensemble (constant N , P , and T), cov-

9

10 Atomistic Simulation in Materials Modeling

ering techniques such as the Berendsen and Parrinello-Rahman barostats which adjust
the simulation box. Chapter 4 then provides an introduction to using the powerful and
widely-used LAMMPS package for running more complex simulations. With simulations
in hand, Chapter 5 focuses on structural characterization through analysis techniques like
visualization and computing the Radial Distribution Function (RDF) and Vibrational
Density of States (VDOS) to understand atomic arrangements and dynamics. Chapter
6 delves into calculating transport properties, such as diffusion (using Mean Squared
Displacement - MSD) and thermal conductivity, often utilizing equilibrium fluctuations
and linear response theory. Finally, Chapter 7 introduces enhanced sampling techniques,
specifically Metadynamics, designed to overcome the limitations of standard MD in sam-
pling rare events and exploring complex free energy landscapes by adding bias potentials
based on chosen collective variables. Well-Tempered Metadynamics is presented as an
improvement for better convergence and free energy estimation.

For electronic structure calculations, students should first master spherical har-
monics and Ewald summation (Appendices B and C) before proceeding to the density
functional theory chapters (8-12). In chapter 8, it introduces the Schrödinger equation
and transitions to DFT as a solution for multi-electron systems, explaining the funda-
mental Hohenberg-Kohn theorems and the practical Kohn-Sham equations solved via an
iterative self-consistent field (SCF) procedure that updates the electron density based on
an effective potential. Chapter 9 applies the Kohn-Sham formalism to the H2 molecule
using a numerical grid approach, guiding the reader through developing code to iteratively
solve the equations within an SCF loop and highlighting the computational expense of
diagonalizing large matrices. Next, the localized basis sets like Gaussian-Type Orbitals
(GTOs) are introduced in Chapter 10 to compute integrals for constructing the Hamil-
tonian matrix and perform the SCF calculation more efficiently. Our journey continues
with Chapter 11, where we explore the electronic structure calculation in periodic sys-
tems, specifically the silicon crystal with concepts like Bloch’s Theorem and basis sets
such as Tight Binding and Plane Waves, introduces the Brillouin Zone, and demonstrates
band structure calculations using the Empirical Pseudopotential Method. Chapter 12
combines DFT with the plane-wave basis set and pseudopotentials for accurate periodic
system simulations, discussing pseudopotentials, Brillouin Zone sampling, Hamiltonian
construction, the plane-wave SCF procedure, and the calculation of nuclear-nuclear in-
teraction using Ewald summation.

The book concludes with advanced topics crucial for materials characterization: phonon
calculations for understanding lattice dynamics (Chapter 13) and local structural envi-
ronment analysis for describing atomic arrangements (Chapter 14). Chapter 14 requires
familiarity with Wigner-D matrices and Clebsch-Gordan coefficients, covered in Appendix
D.

For students interested in exploring this rapidly evolving field further, Appendix E
provides a curated collection of additional references and resources.

Acknowledgments
I would like to thank my students, colleagues, and mentors who have contributed to my
knowledge and understanding of the field, and who have helped refine my teaching. This
work would not have been possible without their support and insights. Additionally, I
am grateful to the creators of open-source platforms and tools, particularly Python and
Jupyter, which make computational science accessible and empower the next generation
of researchers. Finally, I would like to thank my family (Rachel Chen, Gary Zhu and

CONTENTS 11

Jerry Zhu) for their unwavering support and encouragement.

While preparing the materials, I was strongly influenced by two excellent textbooks:

• Understanding Molecular Simulation: From Algorithms to Applications, by Daan
Frenkel and Berend Smit, 3rd Edition

• Electronic Structure, by Richard Martin, 2nd Edition

I studied both books back in my graduate student days. Undoubtedly, both books
have influenced many researchers in my generation. I hope that this lecture note may
serve as a resource that enables students and young researchers to develop a deeper
understanding of molecular simulation and electronic structure methods and apply them
confidently to their own studies.

Qiang Zhu
Waxhaw, NC, 2025

About the Author
Qiang Zhu is an Associate Professor in the Department of Mechanical Engineering and
Energy Science at the University of North Carolina at Charlotte. Prior to joining UNC
Charlotte, he was an Associate Professor in the Department of Physics and Astronomy at
the University of Nevada Las Vegas between 2016 and 2023. Qiang obtained his Bachelor
degree in Materials Science and Engineering from Beijing University of Aeronautics and
Astronautics in China between in 2007, and the Ph.D. in Mineral Physics under Prof.
Artem Oganov’s supervision at Stony Brook University in 2013. He is also the recipients
of 2021 Early Career Awards from both the National Science Foundation and the U.S.
Department of Energy.

https://shop.elsevier.com/books/understanding-molecular-simulation/frenkel/978-0-323-90292-2
https://www.cambridge.org/core/books/electronic-structure/DDFE838DED61D7A402FDF20D735B6C63A

12 Atomistic Simulation in Materials Modeling

1. Simulating the NVE Ensemble

1.1. Early History of Computer Simulation

The Los Alamos MANIAC (Mathematical Analyzer, Numerical Integrator, and Com-
puter) became operational in 1952, marking a significant milestone in the history of
computing. Nicholas Metropolis, one of its most notable early users, pioneered the de-
velopment of the Monte Carlo method—a statistical technique that leverages random
sampling to solve complex mathematical problems. This method soon became founda-
tional in numerous fields, from physics and chemistry to finance, due to its effectiveness
in handling problems with high-dimensional spaces and probabilistic elements.

The advent of computers also opened new possibilities for exploring fundamental sci-
entific problems, particularly in materials science. Many material systems consist of
vast numbers of atoms or molecules; understanding their properties requires innovative
approaches. Traditionally, researchers relied on analytical methods, such as thermody-
namics and statistical mechanics, which were developed to study classical systems like
ideal gases, the Ising model, ferromagnetic phase transitions, and alloys. Although these
methods provided valuable insights, they often lacked atomic-level detail. To model these
systems directly, scientists used hands-on methods like Buffon’s needle experiment to es-
timate values such as π, Bernal’s ball-bearing model [1] to study dense packing in liquids
and glasses, and Kitaigorodskii’s structure seeker [2] to explore molecular arrangements.
While insightful, these direct approaches were often labor-intensive and time-consuming.

The invention of computers transformed this landscape, making it feasible to simulate
atomic and molecular systems with unprecedented precision and scale. Using computa-
tional power, researchers could not only automate these laborious processes but also
model the time evolution of atomic and molecular systems, which is crucial for under-
standing dynamic properties. This breakthrough laid the foundation for modern simu-
lation techniques, enabling scientists to analyze material behavior at the atomic level,
predict novel materials, and gain insights beyond the reach of traditional experimental
methods.

1.2. Molecular Dynamics Simulation

Molecular Dynamics (MD) Simulation is a technique to directly study the atomic evolu-
tion of atoms or molecules in a material system based on Newtonian Dynamics. Shortly
after the invention of computers, researchers started to develop different kinds of MD
simulation techniques to study different systems. Some notable examples include:

1. Phase transition of hard spheres by Alder and Wainwright (1956) [3],

13

14 Atomistic Simulation in Materials Modeling

2. Dynamics of radiation damage by Gibson et al. (1959) [4]

3. Correlations in Liquid Argon by Rahman (1964) [5]

Thanks to the continuous development of MD simulation techniques, we can now sur-
pass experimental limitations to study materials at the atomic or molecular scale. Cer-
tain material properties—such as atomic motions, vibrational modes, and interatomic
forces—are challenging to measure directly due to constraints in resolution and acces-
sibility. MD simulations allow researchers to observe these atomic-level details with
remarkable precision, offering insights that complement and extend beyond experimental
findings.

More importantly, MD simulations provide a unique window into the fundamental
processes governing material behavior by enabling scientists to observe how atoms and
molecules move, interact, and respond to various conditions. These simulations facilitate
the study of microscopic events such as diffusion, fracture, melting, and crystallization,
providing detailed data on the evolution of these processes over time. Additionally, MD
simulations deepen our understanding of how macroscopic properties—like mechanical
strength, thermal conductivity, and chemical reactivity—emerge from atomic-scale inter-
actions. By analyzing simulated trajectories, scientists can uncover the principles that
govern material stability, predict novel material properties, and improve the design of
materials for targeted applications.

In the following chapters, we will delve into the foundational concepts of MD simula-
tion techniques and explore how these principles are numerically implemented in computer
code.

1.3. A First MD Simulation under the NVE Ensemble

Following Rahman’s seminal work in 1964 [5], we aim to study liquid Argon—a relatively
simple yet physically meaningful system. This example will guide us through the entire
process of setting up and running an MD simulation from scratch, providing a hands-on
introduction to key concepts and techniques. In this simplest setting, we will simulate
an isolated system without thermal interaction with any other systems. This is referred
to as the microcanonical (NVE) ensemble in statistical physics. In this ensemble,
the number of particles N , volume V , and total energy E are conserved throughout the
simulation. The system evolves according to Newton’s equations of motion, which govern
the dynamics of particles based on their positions and velocities. The goal is to observe
how the system behaves over time, allowing us to extract meaningful physical properties
from the simulation data.

1.3.1 The MD Workflow

Fig. 1.1 represents a typical loop in an MD simulation, where the system evolves over time
by repeatedly updating the positions, velocities, and forces of particles until a specified
termination condition is met. The workflow follows these steps:

1. Initialization {R,V}: It sets up the initial conditions for the simulation. Initial
positions R and velocities V of all particles are defined.

CHAPTER 1. SIMULATING THE NVE ENSEMBLE 15

Initialization {R,V}

Compute Forces (F)

Integration on {R,V}

Periodic boundary conditions

Termination?

Finish

Yes

No

Figure 1.1: The workflow of a NVE MD simulation.

2. Compute Forces (F): The forces F acting on each particle are calculated based on
their positions R and an interaction model.

3. Integration on {R,V}: Using the computed forces, the integration step updates
the positions R and velocities V of the particles over a small time step.

4. Periodic Boundary Conditions (if necessary): Periodic boundary conditions are
applied to simulate an infinite system by making particles that exit one side of the
simulation box re-enter from the opposite side.

5. Termination Condition: This decision block checks whether a maximum number of
iterations is reached. If no, the workflow loops back to the Compute Forces step;
otherwise, the process advances to the Finish step, ending the simulation.

This workflow illustrates the iterative nature of MD simulations, where the system’s
state is continuously updated to model its time evolution. Each iteration moves the
system forward by a small time increment, ultimately generating a trajectory that can be
analyzed to understand the physical properties and behaviors of the simulated material.

1.3.2 Initialization

The initialization phase involves setting up both the positions and velocities of the parti-
cles in the system. This step is crucial, as it establishes the initial conditions from which
the simulation will evolve.

16 Atomistic Simulation in Materials Modeling

• Atomic Positions: The placement of particles depends on the phase of the mate-
rial being simulated. If the system is a crystalline solid, particles should be placed
on a compatible lattice, such as a face-centered cubic (FCC) or body-centered cu-
bic (BCC) lattice, depending on the material’s structure. This initial arrangement
ensures that the particles reflect the regular, repeating structure of a crystal. In
contrast, for a liquid or amorphous (non-crystalline) material, a random distribu-
tion of particles may be used, but care must be taken to avoid overlapping particles.
For liquids, starting from a dense random packing or using a pre-equilibrated con-
figuration can be helpful.

• Velocities: Initial velocities of particles should follow the well-known Maxwell-
Boltzmann distribution, which describes the probability distribution of particle
speeds in a system at thermal equilibrium. The distribution is given by:

p(v) = 4π

(
m

2πkBT

)3/2

v2 exp

(
− mv2

2kBT

)
, (1.1)

where v is the speed of a particle, m is the particle mass, kB is the Boltzmann
constant, and T is the temperature.

To approximate this distribution, we can sample each velocity component from
a normal (Gaussian) distribution with a mean of zero and a standard deviation
related to the desired temperature and particle mass. Specifically, the standard
deviation σv for each component is:

σv =

√
kBT

m
. (1.2)

This approach ensures that the velocities follow the Maxwell-Boltzmann distribu-
tion in magnitude, and the mean velocity is adjusted to zero to satisfy conservation
of momentum in the system.

The following code describes how to generate initial velocities and compare it with
the theoretical Maxwell-Boltzmann distribution.

1 import numpy as np

2

3 def generate_velocities(N, T, M):

4 """

5 Generate initial velocities from Maxwell -Boltzmann distribution.

6

7 Parameters:

8 -----------

9 N (int): The number of particles in the system.

10 T (float): The temperature of the system in Kelvin.

11 M (float): The mass of each particle in kg.

12

13 Returns:

14 --------

15 V : A 2D array of velocities (N, 3)

16 """

17

18 # Standard deviation of the velocity distribution

19 sigma_v = np.sqrt(k_B * T / M)

CHAPTER 1. SIMULATING THE NVE ENSEMBLE 17

20

21 # Generate velocities from a normal distribution

22 V = np.random.normal(0, sigma_v , (N, 3))

23

24 return V

25

26 # Example usage

27 N = 10000 # Number of particles

28 T = 300 # Temperature in Kelvin

29 M = 1.67e-27 # Mass of a particle in kg

30 k_B = 1.380649e-23 # J/K

31

32 velocities , speeds = generate_velocities(N, T, M)

33

34 # Plot the histogram of speeds

35 plt.hist(speeds , bins=50, density=True , alpha =0.6, color=’g’)

36

37 # Overlay the Maxwell -Boltzmann theoretical distribution

38 v = np.linspace(0, np.max(speeds), 200)

39 distribution = (4 * np.pi * v**2) * (M / (2 * np.pi * k_B * T))**(3/2)

* np.exp(-M * v**2 / (2 * k_B * T))

40 plt.plot(v, distribution , linewidth=2, color=’r’)

41 plt.xlabel(’Speed (m/s)’)

42 plt.ylabel(’Probability Density ’)

43 plt.title(’Maxwell -Boltzmann Speed Distribution ’)

44 plt.tight_layout ()

This Python function generate velocities, initializes the velocities of particles in
a system based on a specified temperature and particle mass, following the Maxwell-
Boltzmann distribution. Using the Boltzmann constant kB, the function calculates the
standard deviation σv of the velocity distribution as

√
kBT/m. Then it generates random

velocities for each particle by drawing from a normal (Gaussian) distribution with mean 0
and standard deviation σv. The output is an array of velocities, representing the velocity
of each particle. Fig. 1.2 shows the resulting distribution of the generated velocities and
its overlap with the theoretical distribution.

0 1000 2000 3000 4000 5000 6000 7000 8000
Speed (m/s)

0.0000

0.0001

0.0002

0.0003

P
ro

ba
bi

lit
y

D
en

si
ty

Maxwell-Boltzmann Speed Distribution

Figure 1.2: The comparison of velocity distribution between theory and modeling.

18 Atomistic Simulation in Materials Modeling

1.3.3 Interatomic Interaction: The Lennard-Jones Potential

Once the system is initialized, we need to evaluate the energy of the system and calculate
forces to determine the motion of the particles. In MD simulations, the total energy of
the system is described by interatomic interactions, which are defined by a specific force
field. The force field is a mathematical model that specifies how particles in the system
interact, and it dictates the forces experienced by each particle based on their relative
positions.

Among the many force field options available, the Lennard-Jones Potential is one
of the simplest and most commonly used models, especially for systems involving noble
gases or other non-bonded interactions. It assumes that particles interact via pairwise
interactions, meaning that the potential energy between any two particles depends only
on the distance between them as follows.

V (r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
, (1.3)

where:

• r is the distance between two interacting particles,

• ϵ controls the depth of the potential well, which represents the strength of the
attractive interaction, and

• σ is the distance at which the interparticle potential is zero, roughly corresponding
to the size of the particles.

As shown in Fig. 1.3, the Lennard-Jones potential consists of two parts:

• 1/r12 term accounts for short-range repulsion,

• −1/r6 term accounts for long-range attraction (London dispersion force),

r

V (r)

Repulsion

Attraction

Figure 1.3: Lennard-Jones potential illustrating the attractive and repulsive regions.
The potential minimum occurs at approximately 1.12σ.

In general, the force F(r) between two particles is the negative gradient of the poten-
tial:

CHAPTER 1. SIMULATING THE NVE ENSEMBLE 19

F(r) = −∂E(r)

∂r

For a Lennard-Jones potential, the force F(r) is:

F(r) =
∂E(r)

∂r
= 4ϵ

[
−12

(σ
r

)12 1

r
+ 6

(σ
r

)6 1

r

]
(1.4)

The Python code for calculating energy and forces is shown as follows.

1 import numpy as np

2 from numba import njit

3

4 @njit

5 def compute_lj_energy_forces(positions , epsilon , sigma):

6 """

7 Calculate the total energy and forces by the LJ potential.

8

9 Parameters:

10 -----------

11 positions (N, 3): the positions of each particle ,

12 epsilon (float): LJ potential parameter ,

13 sigma (float): LJ potential parameter.

14

15 Returns:

16 --------

17 energy (float): The total LJ potential energy

18 forces (N, 3): An array of forces

19 """

20

21 N = len(positions)

22 energy = 0.0

23 forces = np.zeros_like(positions)

24

25 for i in range(N):

26 for j in range(i + 1, N):

27 r_ij = positions[j] - positions[i]

28 r = np.linalg.norm(r_ij)

29 r6 = (sigma / r) ** 6

30 r12 = r6 ** 2

31

32 # Lennard -Jones potential

33 e_ij = 4 * epsilon * (r12 - r6)

34 energy += e_ij

35

36 # Force calculation

37 f_ij = 24 * epsilon * (2 * r12 - r6) / r**2 * r_ij

38 forces[i] += f_ij

39 forces[j] -= f_ij

40

41 return energy , forces

The code defines a function, compute lj energy forces, which calculates the total
energy and forces in a system using the Lennard-Jones potential. The function iterates
over each unique pair of particles, calculating the distance between them and compute
both the potential energy and the force for that pair. The computed potential energy is
accumulated into a total energy variable, while the forces on each particle are updated

20 Atomistic Simulation in Materials Modeling

based on the calculated force, ensuring that each pair interaction is equal and opposite
to satisfy Newton’s third law. It should be noted that when the periodic boundary
condition is imposed, each atom would have an infinite number of neighbors. One needs
to rewrite the code to include more neighbors in the periodic images. A practical solution
is to include only the neighbors within a cutoff value.

To speed up this calculation, the Numba library is used. Numba’s @njit decorator
enables Just-In-Time (JIT) compilation, which translates the Python code into optimized
machine code at runtime. This optimization can significantly improve performance, es-
pecially for computationally intensive loops like those in this function. By adding @njit,
the code avoids Python’s interpretation overhead and can achieve speeds close to that of
compiled languages such as C or FORTRAN.

1.3.4 Integration

Once the forces on each particle become available, we can then estimate the acceleration
and update R and V of the particles over a small time increment dt. The most natural
way to do this is to use the Euler’s method, which is a simple numerical integration
technique. The Euler’s method updates the position and velocity of a particle as follows:

r(t+ dt) = r(t) + v(t) dt, (1.5)

v(t+ dt) = v(t) + a(t) dt, (1.6)

where:

• r(t) and v(t) are the position and velocity of a particle at time t,

• a(t) is the acceleration (or force per unit mass) at time t, and

• dt is the time step for the integration.

However, Euler’s method is not very accurate and can lead to instability in the sim-
ulation, especially for long time steps. To improve the accuracy and stability of the
integration, we can use more sophisticated methods that take into account the forces act-
ing on the particles at different time steps. One commonly used method for this purpose
is the Velocity Verlet algorithm. It performs the updates as follows:

r(t+ dt) = r(t) + v(t) dt+ 0.5 a(t) dt2, (1.7)

v(t+ dt) = v(t) + 0.5 [a(t) + a(t+ dt)] dt, (1.8)

The first equation updates the position r(t + dt) based on the current position r(t),
current velocity v(t), and the acceleration a(t) at the current time step. This equation
accounts for the particle’s velocity as well as any changes in position due to acceleration,
providing a second-order accurate estimate.

The second equation updates the velocity v(t + dt) by taking the average of the
acceleration at the current time step, a(t), and the acceleration at the next time step,
a(t + dt). This average acceleration approach improves the accuracy of the velocity
update, making the Velocity Verlet algorithm both time-reversible and energy-conserving.

According to Taylor expansion, the Velocity Verlet algorithm is accurate to O(dt3)
for position updates and O(dt2) for velocity updates. This level of accuracy allows the
integration to maintain stability over long simulation times, even with relatively large
time steps.

https://numba.pydata.org
https://en.wikipedia.org/wiki/Verlet_integration

CHAPTER 1. SIMULATING THE NVE ENSEMBLE 21

1.4. Code Implementation and Testing

1.4.1 Problem Setup

In the following, we will develop our first MD code for simulating the liquid Argon system,
which can be effectively described by the Lennard-Jones potential with ϵ = 0.0103 eV
(equivalent to 120kB) and σ ≈ 0.34 nm. To keep the simulation manageable on a single-
core computer, we consider a system of 864 atoms under periodic boundary conditions.
According to experimental data, Argon has a melting point of 83.8 K, below which it
adopts a face-centered cubic (fcc) crystal structure. For this simulation, we follow the
setup used in Rahman’s 1964 paper [5], studying Argon’s liquid behavior at 94.4 K. Based
on experimentally determined density, we estimate the required cubic box size to enclose
the 864 atoms as 10.229σ.

Although it is challenging to directly generate atomic positions representing liquid
Argon, we can initialize the system in an fcc arrangement and allow the MD simulation
to naturally reach the liquid state at the desired temperature. In a single fcc unit cell,
it contains four atoms at fractional positions (0, 0, 0), (0, 1/2, 1/2), (1/2, 0, 1/2), and
(1/2, 1/2, 0). By replicating this unit cell six times along each dimension, we create a
6× 6× 6 supercell consisting of 864 atoms.

Next, the initial velocities are assigned according to a Maxwell-Boltzmann distri-
bution, after which the iterative force calculations and velocity Verlet integration are
performed, as described in the previous section.

1.4.2 The Python Code for NVE MD Simulation

The code snippets below implement such a setup and the detailed simulation steps.

1 import numpy as np

2 from numba import njit

3 from time import time

4

5 def initialize_position(L):

6 """

7 Initialize positions in a 6*6*6 of the FCC unit cell

8

9 Args:

10 L (float): unit length of the cubic box

11

12 Returns:

13 R (float) : (4*6*6*6 , 3) array

14 """

15 # FCC unit cell fractional positions

16 r = np.array ([

17 [0.0, 0.0, 0.0],

18 [0.5, 0.5, 0.0],

19 [0.5, 0.0, 0.5],

20 [0.0, 0.5, 0.5]

21])

22 a = L/6

23

24 r *= a

25 R = []

26 for i in range (6):

22 Atomistic Simulation in Materials Modeling

27 for j in range (6):

28 for k in range (6):

29 R.extend(r + np.array ([i, j, k])*a)

30 return np.array(R)

31

32 def initialize_velocity(N):

33 """

34 Initialize velocities using Maxwell -Boltzmann distribution

35

36 Args:

37 N (int): Number of atoms

38

39 Returns:

40 V (float) : (N, 3) array

41 """

42 # Standard deviation of the velocity distribution

43 sigma_v = np.sqrt(TEMPERATURE * KB / MASS)

44 V = np.random.normal(0, sigma_v , (N, 3))

45

46 # Center the velocities

47 V -= np.mean(V, axis =0)

48

49 return V

50

51 @njit

52 def LJ_energy_forces(R, L):

53 """

54 Compute the energy and forces from the given system

55

56 Args:

57 R (float) : (N, 3) array

58 L (float): unit length of the cubic box

59

60 Returns:

61 PE (float): total energy

62 F (float): atomic forces [N, 3] array

63 """

64

65 N = len(R)

66 F = np.zeros_like(R)

67 PE = 0.0

68

69 for i in range(N - 1):

70 for j in range(i + 1, N):

71 # Compute R between (i, j)

72 rvec = R[i] - R[j]

73 rvec -= np.round(rvec / L) * L

74 r = np.linalg.norm(rvec)

75

76 # Compute the potential Energy

77 R6 = (SIGMA / r) ** 6

78 R12 = R6 ** 2

79 PE += 4 * EPSILON * (R12 - R6)

80

81 # Compute and update forces

82 force = 24 * EPSILON * (2 * R12 - R6) / r ** 2

83 forec_vec = force * rvec

84 F[i] += forec_vec

CHAPTER 1. SIMULATING THE NVE ENSEMBLE 23

85 F[j] -= forec_vec

86

87 return PE , F

88

89 def verlet_integration(R, V, F, L):

90 """

91 Intergration based on the Verlet Velocity algorithm

92

93 Args:

94 R (float) : (N, 3) array

95 V (float) : (N, 3) array

96 F (float) : (N, 3) array

97 L (float) : Cell length

98

99 Returns:

100 R (float) : (N, 3) array

101 V (float) : (N, 3) array

102 F (float) : (N, 3) array

103 """

104

105 # Update R

106 R += V * TIMESTEP + 0.5 * F / MASS * TIMESTEP ** 2

107 R = np.mod(R, L)

108

109 # Compute F_new

110 PE , F_new = LJ_energy_forces(R, L)

111

112 # Update V

113 V += 0.5 * (F + F_new) / MASS * TIMESTEP

114

115 # Update F

116 F = F_new

117

118 return R, V, F, PE

119

120 if __name__ == "__main__":

121

122 # Ensure reproduction

123 np.random.seed (42)

124

125 # Constants

126 KB = 1.380649e-23 # Boltzmann constant in J/K

127 mass = 1.66053906660e-27 # unit mass in kg

128

129 # Force Field parameters

130 EPSILON = 120*KB # in J (epsilon = 120 * k_B)

131 SIGMA = 3.4e-10 # in meters (3.4 Angstrom)

132

133 # System Parameters

134 N = 864 # number of atoms

135 MASS = 39.948 * mass # mass of Argon atom in kg

136 L = 10.229 * SIGMA # cubic box side length

137

138 # MD Parameters

139 TEMPERATURE = 94.4 # in K

140 TIMESTEP = 1.0 * 1e-14 # time step in seconds

141 num_steps = 200 # Number of steps

142

24 Atomistic Simulation in Materials Modeling

143 # Initialize the system

144 R = initialize_position(L)

145 V = initialize_velocity(N)

146 E, F = LJ_energy_forces(R, L)

147

148 KEs = []

149 PEs = []

150

151 # MD propogation

152 t0 = time()

153 print(f"Step PE KE E_total Time")

154 for step in range(num_steps):

155 R, V, F, PE = verlet_integration(R, V, F, L)

156 KE = 0.5 * MASS * np.sum(V ** 2)

157 KEs.append(KE)

158 PEs.append(PE)

159 if step % 10 == 0:

160 t = time() - t0

161 E = KE + PE

162 print(f"{step:4d}{PE:12.4e}{KE:12.4e}{E:12.4e}{t:6.1f}")

In this code, the main routine initializes a molecular dynamics (MD) simulation for
a system of argon atoms, employing the Lennard-Jones (LJ) potential. It then inte-
grates the equations of motion using the Verlet velocity algorithm. The simulation
is orchestrated through a series of functions—initialize position, initialize velocity,
LJ energy forces, and verlet integration—each meticulously detailed in the preced-
ing sections. Notably, the LJ energy forces function, when applying periodic boundary
conditions, considers only the shortest distance between any pair of atoms (ij) for cal-
culating interactions. This approach is justified by the rapid decay of the Lennard-Jones
potential and other short-range force fields with distance, rendering interactions negli-
gible for atom pairs separated by larger distances, provided the unit cell is sufficiently
large.

Executing the code generates outputs that illustrate the dynamic interplay between
potential and kinetic energies as the simulation progresses. Initially, SI units are adopted
for their inherent consistency and clarity. However, as the discussion evolves, a transi-
tion to a more context-specific and convenient unit system will be made. Despite the
individual fluctuations in potential and kinetic energies, the total energy of the system
should ideally remain constant. This reflects the fundamental principle of energy conser-
vation within an isolated NVE system. Deviations from this constant total energy may
signal underlying issues such as numerical inaccuracies, an inadequately small integration
time step, or improper implementation of boundary conditions. Therefore, ensuring the
stability and accuracy of simulation parameters is paramount for achieving the expected
energy conservation.

1 Step PE KE E_total Time

2 0 -9.7496e-18 1.6423e-18 -8.1073e-18 0.1

3 10 -9.5248e-18 1.4171e-18 -8.1077e-18 1.0

4 20 -8.9089e-18 8.0209e-19 -8.1068e-18 1.8

5 30 -8.8762e-18 7.6884e-19 -8.1074e-18 2.7

6 40 -8.9330e-18 8.2564e-19 -8.1074e-18 3.5

7 50 -8.9173e-18 8.0998e-19 -8.1073e-18 4.4

8 60 -8.9381e-18 8.3079e-19 -8.1073e-18 5.3

9 70 -8.9757e-18 8.6843e-19 -8.1073e-18 6.1

10 80 -9.0010e-18 8.9366e-19 -8.1073e-18 7.0

CHAPTER 1. SIMULATING THE NVE ENSEMBLE 25

11 90 -8.9847e-18 8.7744e-19 -8.1073e-18 7.9

12 100 -8.9837e-18 8.7644e-19 -8.1073e-18 8.7

13 110 -8.9892e-18 8.8187e-19 -8.1073e-18 9.6

14 120 -9.0023e-18 8.9496e-19 -8.1073e-18 10.5

15 130 -9.0034e-18 8.9613e-19 -8.1073e-18 11.3

16 140 -8.9840e-18 8.7673e-19 -8.1073e-18 12.2

17 150 -8.9604e-18 8.5317e-19 -8.1073e-18 13.1

18 160 -8.9895e-18 8.8216e-19 -8.1073e-18 13.9

19 170 -8.9890e-18 8.8165e-19 -8.1073e-18 14.8

20 180 -8.9766e-18 8.6932e-19 -8.1073e-18 15.7

21 190 -9.0085e-18 9.0121e-19 -8.1073e-18 16.5

One can visualize the evolution of energies in Fig. 1.4. Clearly, we observe an initial
significant change in kinetic and potential energies, reflecting substantial atomic move-
ment. Once the system reaches a local equilibrium, atoms only oscillate around their
average positions, leading to a more stable energy state. The potential energy (PE) and
kinetic energy (KE) exhibit fluctuations, but the total energy remains constant, indi-
cating that the system is in a steady state. This behavior is characteristic of an NVE
ensemble, where the total energy is conserved over time.

0 25 50 75 100 125 150 175 200
MD Steps

1.0

0.8

0.6

0.4

0.2

0.0

0.2

E
ne

rg
y

(J
)

1e 17 NVE simulation of liquid argon

Kinetic Energy
Potential Energy
Totoal Energy

Figure 1.4: The simulated evolution of energies for liquid Argon at 94.4 K.

Additionally, Fig. 1.5 displays two MD snapshots taken at the initial timestep and
at 100 fs, illustrating a transition process from solid to liquid. In the following chapters,
we will explore more advanced simulation and characterization techniques (e.g., radial
distribution function, vibrational density of states) to gain deeper insights into these
transition mechanisms.

26 Atomistic Simulation in Materials Modeling

(a) fcc at 0 fs (b) liquid at 100 fs

Figure 1.5: The NVE MD snapshots from our simulation.

1.5. Summary

In this chapter, we introduced MD simulations within the NVE ensemble, covering the
historical context, fundamental principles, and essential steps in implementation, includ-
ing system initialization, force calculations, integration, and analysis for isolated systems,
both with and without periodic boundary conditions. This foundation enables simulation
and study of atomic systems, uncovering insights that may be difficult to achieve through
experiments alone.

To become familiar with the MD framework, it is beneficial to repeat the simulation
with varied parameters or to set up other lightweight model simulations (e.g., other noble
gases). By examining the results and questioning whether the output energy values make
sense, you gain valuable insights into the numerical aspects of MD simulations. These
practices prepare you for larger-scale simulations that involve more atoms, longer simu-
lation times, and more complex force fields. For such scenarios, more mature packages
like LAMMPS, GROMACS and NAMD, are recommended, as they operate based on the
same foundational principles introduced here.

https://github.com/lammps/lammps
https://www.gromacs.org
https://www.ks.uiuc.edu/Research/namd/

2. Thermostat in the NVT Ensemble

2.1. Motivation

So far, we have learned how to run an NVE MD simulation for a periodic system from
both programming and application points of view. In such simulations, the total energy
E should be constant with the propagation of time. This is called the microcanonical
ensemble in statistical physics. However, this setup is not really the truth for many
practical simulations. It is more likely that the system would interact with the surround-
ing environment and exchange heat over the boundaries. Therefore, we will explore how
to perform a MD simulation that allows the heat exchanges in this chapter.

Microcanonical Ensemble

Fixed N , V , E

Isolated System

Canonical Ensemble

Fixed N , V , T

Connected to Heat Reservoir

Heat Reservoir

Figure 2.1: The schematic comparison of NVE and NVT ensembles.

2.2. Extension to NVT by Allowing Heat Exchange

In a real scenario, we often want to study the system under a constant temperature condi-
tion, instead of constant energy. This method is particularly useful for simulating systems
in the Canonical Ensemble (constant number of particles, volume, and temperature,
often denoted as NVT).

As shown in Fig. 2.1, to maintain the system at a desired temperature, we couple it
to an external heat bath. There are several thermostat techniques for this purpose. In
real life, temperature is a measure of how fast the particles are moving on average. But in
a computer simulation, you need a way to control this temperature to make sure it stays
at the desired level throughout the simulation. A thermostat in molecular dynamics is a
tool that helps you keep the temperature of your simulated system steady, just like how
a thermostat in your house keeps the room temperature stable.

27

28 Atomistic Simulation in Materials Modeling

2.3. Intuitive Thermostats

To introduce the thermostat to a MD system, the trick is to modify the integrator. Cur-
rently, there exist several flavors of thermostat techniques. Perhaps the easiest way to
rescale velocities to force the total kinetic energy to be equal to 3NkBT/2 at every few
steps. However, this kind of rescaling can definitely perturb the MD trajectory strongly
and thus not recommended. In this section, we introduce two widely used thermostats for
maintaining a constant temperature: the Anderson thermostat and the Langevin ther-
mostat. These thermostats enable simulations under canonical (NVT) ensembles by con-
trolling the system’s temperature, which is crucial for studying temperature-dependent
properties of materials.

2.3.1 The Anderson Thermostat

The main idea of Anderson thermostat [6] is inspired by the observation of physical col-
lisions between particles in the system and particles in the surrounding environment (see
Fig. 2.2). After collisions, the particles in the system would change the velocities. These
collisions ensure that the system exchanges energy with the environment, maintaining
thermal equilibrium.

System

Heat Bath Unchanged for rest particles

Reset velocity for a few particles

Figure 2.2: Illustration of the Andersen Thermostat. A heat bath randomly selects a
few particles (in red) and resets their velocities according to the Maxwell-Boltzmann
distribution. Other particles continue with their current velocities.

Thus, we could periodically pick some particles and randomize the velocities of some
particles in the system. These randomizations mimic the effect of an external environment
interacting with the particles, ensuring that the system’s temperature remains constant.
Hence, we allow two types of MD integration rules in the actual code.

1. Random particle selection and velocity assignment. With a certain prob-
ability ν, the velocity of each particle is reassigned by sampling from a Maxwell-
Boltzmann distribution corresponding to the desired temperature T .

2. Ordinary update. If the particle’s velocity is not reassigned, it evolves according
to the usual equations of motion (e.g., using the Verlet integration method).

In this technique, Collision Frequency ν determines how often the particle velocities
are randomized (following a Poisson Distribution). A higher ν means more frequent
collisions (interaction) with the heat bath, leading to stronger coupling to the temperature

https://en.wikipedia.org/wiki/Poisson_distribution

CHAPTER 2. THERMOSTAT IN THE NVT ENSEMBLE 29

bath. We should choose a ν so that velocity reassignment happens at an appropriate rate
to maintain the desired temperature without overly disrupting the natural dynamics of
the system.

The Anderson thermostat is relatively simple to implement, requiring only the addi-
tion of random velocity reassignment at each time step. To include it to MD, one can
refer to the following Algorithm 1.

Algorithm 1 MD based on Anderson thermostat

Initialization
Set up initial positions and velocities for the particles
calculate initial forces.
Main MD Loop:
for each time step do

Update positions using the current velocities and forces.
Calculate new forces based on updated positions.
Update velocities using the average of old and new forces.
Apply the Anderson thermostat by reassigning velocities with a probability.

end for
Output: Collect and store data for analysis

However, it may not reflect the real dynamics. Since velocities are randomly reas-
signed, the resulting particle trajectories may not correspond to those in a real physical
system where energy exchange occurs through physical interactions. This is particularly
true for a periodic system without the clear definition of boundary. In addition, one needs
to play with the ν values.

2.3.2 The Langevin Thermostat

The Langevin thermostat maintains the temperature of a system while also modeling the
effects of friction and random forces, similar to those that might be encountered in a
viscous fluid. As shown in Fig. 2.3, the basic idea is to modify the equations of motion
by adding two additional terms to the standard Newtonian dynamics:

mi
dvi

dt
= Fi − γmivi + Ri(t) (2.1)

• Frictional Force γmivi: the damping effect of the environment, which tends to slow
down the particles.

• Random Force Ri(t): the random collisions with particles from the heat bath, which
cause the particles to move randomly, maintaining the system’s temperature. These
kicks help maintain the temperature of the system by continuously injecting energy
into the system.

A typical value of γ used in many MD simulations is around γ = 0.1 ps−1. This value
provides a good balance between maintaining temperature control and preserving realistic
dynamics. The system is weakly coupled to the heat bath, ensuring that it can sample
the canonical ensemble without heavily damping the natural motion of the particles.

30 Atomistic Simulation in Materials Modeling

System

deterministic

friction

thermal

Heat Bath
Energy Exchange

v1

v′1

v2

v′2

v′3

Figure 2.3: Illustration of the Langevin Thermostat. Each particle experiences
deterministic forces, frictional damping, and random thermal noise due to coupling with
a heat bath.

The Langevin thermostat is implemented through a modified Velocity Verlet integra-
tion, incorporating the additional friction and random forces into the velocity update
step:

vi(t+ ∆t) = vi(t) +
Fi(t)

mi

∆t− γvi(t)∆t+ Ri

√
∆t (2.2)

1 import numpy as np

2

3 def langevin_thermostat(V, F, gamma):

4 # Update R, V, F using Verlet integration

5 R += V * TIMESTEP + 0.5 * F * TIMESTEP **2 / MASS

6

7 # Update velocities with deterministic part

8 V += 0.5 * F * TIMESTEP / MASS

9

10 # Apply friction and random force (stochastic part)

11 V += -gamma * V * TIMESTEP

12 sigma = np.sqrt(2 * gamma * kB * T / MASS)

13 V += np.random.normal(0, sigma , V.shape) * np.sqrt(dt)

14

15 # Update forces and velocities

16 F_new = calculate_forces(positions)

17 V += 0.5 * (F + F_new) / MASS * TIMESTEP

18 F = F_new

19 return R, V, F

20

21 # Initialization

22 T = 300

23 R = Initialize_positions ()

24 V = Initialize_velocities ()

25 F = calculate_forces(R)

26

27 # Main MD loop

28 for step in range(num_steps):

29 R, V, F = langevin_thermostat(R, V, F, L, gamma)

CHAPTER 2. THERMOSTAT IN THE NVT ENSEMBLE 31

2.3.3 Comparison

Both the Anderson and Langevin thermostats provide effective temperature control in
MD simulations, but differ in approach and application.

The Anderson thermostat periodically resets the particle velocities, which is sim-
ple to implement but disrupts the natural trajectory of the particles. In contrast, the
Langevin thermostat introduces a more realistic interaction with a thermal environment
by combining frictional damping and random forces, allowing for smooth, continuous dy-
namics. Hence, the Langevin thermostat maintains realistic trajectories, making it ideal
for preserving the natural dynamics of the system. However, it is computationally more
expensive due to the additional stochastic terms. whereas the Anderson thermostat is
computationally efficient and effective for rapid temperature equilibration but may be
less suited for systems where dynamic fidelity is critical.

In summary, the Anderson thermostat excels in simplicity and speed but compromises
on dynamic realism, while the Langevin thermostat strikes a balance between realistic
dynamics and effective temperature control at the cost of higher computational complex-
ity.

2.4. Statistical Physics Perspective

While both the Anderson and Langevin thermostats enable instantaneous velocity up-
dates to simulate heat exchange with a fictitious reservoir, they lack rigorous validation
to confirm that these updates accurately replicate interactions with a real heat bath.
Additionally, both methods introduce random components into the simulation, making
the results non-deterministic. This stochasticity raises the question of whether these
approaches truly adhere to the underlying principles of physical systems.

To address these concerns, it is crucial to adopt a more formal approach to validate
the system’s evolution within the simulation. A robust starting point is to examine the
statistical properties of the simulated system within the context of the NVE and NVT
ensembles from a probability perspective. By analyzing these properties, we can assess
whether the system’s behavior aligns with the expected distributions and dynamics dic-
tated by fundamental physical laws. This validation ensures that the simulation reliably
represents real-world systems and provides meaningful insights.

In an NVE ensemble, the system is isolated from its surroundings, so the total energy
E, which includes both the kinetic and potential energy, remains constant. With no
external interaction, the energy conservation principle dictates that E should remain
invariant throughout the simulation.

In contrast, an NVT ensemble allows the system to exchange heat with an external
reservoir. As a result, the total energy of the system is not fixed; it fluctuates over
time due to heat exchanges with the reservoir. Assuming at time t1, the total energy is
measured as E1, and at time t2, it is measured as E2. How do we calculate the probability
of observing E1 and E2 in subsequent time frames? For convenience, we denote these
probabilities as p(E1) and p(E2). Statistical mechanics provides a framework to derive
these probabilities, offering a rigorous foundation for understanding the evolution of the
system under heat exchange conditions in the NVT ensemble.

Here we track each particle (i) in terms of its position (ri) and momentum (pi), giving
us a total of six numbers for each particle. Each unique snapshot of {pi, ri} is referred to
as a microstate. It is possible for a group of microstates to share the same total energy.

32 Atomistic Simulation in Materials Modeling

This group of microstates is called a macrostate, and the number of microstates in a
macrostate is referred to as its multiplicity (Ω).

A Toy example of microstate/macrostate/multiplicity.

Imagine that you are flipping three coins multiple times and counting the statistics
of heads and tails. There are 8 possible combinations: HHH, HHT, HTH, THH,
HTT, TTH, THT, TTT. While we are not concerned with the specific sequences,
we are interested in the total counts. This means we have 8 microstates in total
but only 3 types of macrostates:

• 1 occurrence of 3 heads (HHH), thus Ω(3H) = 1,

• 3 occurrences of 2 heads (HHT, HTH, THH), thus Ω(2H) = 3,

• 3 occurrences of 1 head (HTT, TTH, THT), thus Ω(1H) = 3,

• 1 occurrence of 0 heads (TTT), thus Ω(0H) = 1,

Returning to our original problem, the ratio of p(E1)/p(E2) depends on the multiplic-
ities Ω(E1)/Ω(E2).

P (E2)

P (E1)
=

Ω(E2)

Ω(E1)
≈ ΩR(E2)

ΩR(E1)
(2.3)

Why do we look at the reservoir?

Here we consider an isolated system, consisting of a reservoir and a system, and
the reservoir is much bigger than the system. So the actual Ω = ΩRΩS, can be
approximated by ΩR. One can intuitively think the majority of multiplicity should
be done by the reservoir.

There is a famous entropy equation, S = kB ln Ω,

P (E2)

P (E1)
=
eSR(E2)/kB

eSR(E1)/kB
= e[SR(E2)−SR(E1)]/kB (2.4)

The relation between S and U under NVT.

From the microscopic view, the system reaches an equilibrium when it has the
largest entropy. So the change of entropy can be counted as a function of (U , V ,
N)

dS =
1

T
[dU + PdV − µdN] =

dU

T
NVT ensemble

From the macroscopic view, you can also think it from the 1st raw.
Since the change of energy (dU) can be either from Work (pdV , omitted at a
constant V) or a heat transfer (TdS), so dU = TdS at the NVT ensemble.

For simplicity, we can neglect PdV and µdN terms (since N and V do not change).
Thus,

CHAPTER 2. THERMOSTAT IN THE NVT ENSEMBLE 33

dSR =
1

T
[UR(E2)− UR(E1)] (2.5)

Note that U(E2) + URE2 should be conserved. Therefore, we have:

P (E2)

P (E1)
=
e−E2/kBT

e−E1/kBT
= e−(E2−E1)/kBT (2.6)

In conclusion, the probability of each state in a canonical ensemble (NV T) is propor-
tional to an exponential term:

P (s) ∝ e−E(s)/kBT ⇒ P (s) =
1

Z
e−E(s)/kBT (2.7)

where Z is the normalization constant, also known as the Partition function. If we
sum over all possible states (e.g., s1, s2, · · ·), the total

∑N
i=1 p(si) = 1. Therefore,

Z =
∑

e−E(s)/kBT (2.8)

Thus, in the NVT ensemble, E can take different values, and the probability follows
the relation of e−E/kBT , also called Boltzmann distribution.

2.5. Partition Function of the Extended System

If we want to avoid the use of brute-force velocity reassignment, a gentler approach is to
control the temperature by coupling the system to an additional degree of freedom, which
acts as a thermal reservoir that exchanges energy with the system. Nose introduced
a method where the system’s Hamiltonian is extended by adding an artificial variable s
that represents the thermal reservoir [7]. Fig. 2.4 demonstrates this approach, where s
serves as a virtual variable to rescale the velocity at each MD update. When s=1, there is
no impact on the system. When s is greater than 1, it means the velocity would become
larger, mimicking the heat absorption process from the reservoir to the system. On the
other hand, a small s value mimic the heat exchange from the system to the reservoir.

System

Heat Bath
velocity rescaling

s

s < 1: Heat released

s = 1: No rescaling

s > 1: Heat absorbed

Figure 2.4: Illustration of Nosé’s extended Hamiltonian method using a thermal
reservoir variable s. In each timestep, s is be applied to rescale the velocity for all
particles in the system.

Based the above design principle, it is straightforward to write down the new system’s
Hamiltonian as follows,

34 Atomistic Simulation in Materials Modeling

H =
N∑
i=1

p2
i

2ms2
+ U(r1, r2, . . . , rN) +

p2s
2Q

+ gkBT ln(s) (2.9)

The first two terms represent the system’s kinetic energy (after the velocity rescaling),
and potential energy as usual. To describe the whole system, we also include two more
terms to express the kinetic and potential energy for the fictitious variable s. For the
kinetic energy part, we need to define a mass term Q, and thus the energy becomes
p2s/2Q as usual. For the potential energy part, the choice would be somewhat arbitrary.
Hypothetically, we want to make sure this term is zero when s=1 (no heat exchange),
becomes positive when s > 1 (giving heat to the system), and becomes negative when
s < 1 (receiving heat from the system). Obviously, the term should take a function like
C ln(s) where C is a constant. For the sake of convenience, we use the form of gkBT ln(s)
in the following discussions.

In order to ensure the NVT ensemble, we need to compute the partition function Z
and make sure that it is proportional to e−E/kBT . Hence, we proceed to compute the
partition function Z for the given H

Z =
1

N !

∫
dpsdsdp

NdrNδ(H − E) (2.10)

=
1

N !

∫
dpsdsdp

′3Ndr3Ns3Nδ

(N∑
i=1

p′2
i

2m
+ U(r1, r2, . . . , rN) +

p2s
2Q

+ gkBT ln(s)− E
)

=
1

N !

∫
dpsdsdp

′3Ndr3Ns3Nδ

(N∑
i=1

H0 +
p2s
2Q

+ gkBT ln(s)− E
)

Note that here we defined

p′ = p/s

H0 =
p′2
i

2m
+ U(r1, r2, . . . , rN)

Now, let

f(s) =
N∑
i=1

H0 +
p2s
2Q

+ gkBT ln(s)

s0 = exp

[
− H0 + p2s/2Q

gkBT

]
←− f(s0) = 0

f ′(s0) =
gkBT

s

δ(f(s)) = δ(s− s0)/f ′(s0)

Plugin them back to Z (eq. 2.10)

CHAPTER 2. THERMOSTAT IN THE NVT ENSEMBLE 35

Z =
1

N !

∫
dpsdsdp

′3Ndr3Ns3N
s

gkBT
δ

(
s− exp

[
− H0 + p2s/2Q− E

gkBT

])
=

1

N !

1

gkBT

∫
dpsdsdp

′3Ndr3Ns3N+1δ

(
s− exp

[
− H0 + p2s/2Q− E

gkBT

])
=

1

N !

1

gkBT

∫
dpsdp

′3Ndr3Ndss3N+1δ

(
s− exp

[
− H0 + p2s/2Q− E

gkBT

])
=

1

N !

1

gkBT

∫
dpsdp

′3Ndr3N exp

[(
− H0 + p2s/2Q− E

gkBT

)
(3N + 1)

]
=

1

N !

1

gkBT

∫
dps exp

[(
− p2s/2Q− E

gkBT

)
(3N + 1)

] ∫
dp′3Ndr3N exp

[
− H0(p′, r′)

gkBT
(3N + 1)

]
=

1

N !

1

gkBT

∫
dps exp

[(
− p2s/2Q− E

gkBT

)
(3N + 1)

] ∫
dp′3Ndr3N exp

[
− 3N + 1

g

H0(p′, r′)

kBT

]
= C

∫
dp′3Ndr3N exp

(
− 3N + 1

g

H0(p′, r′)

kBT

)
= C

∫
dp′3Ndr3Nexp

(
−H0

kBT

)
(when g = 3N + 1)

The ps part gives a constant dependent on the parameters E, T , Q and g. If we
choose g = 3N + 1, the partition function Z of the extended system is equivalent to
that of the physical system in the canonical ensemble Zc except for a constant factor,
Z = CZc. Hence, this approach maintains the system at a desired temperature, allowing
it to sample from the canonical ensemble, making the Nose-Hoover thermostat an effective
tool for molecular dynamics simulations that require temperature control.

2.6. The Nose-Hoover Thermostat

The Nose’s extended system approach was further reformulated by Hoover to simplify
the numerical process [8]. In the Nose-Hoover thermosta, the equations of motion include
a friction term (ξ) that dynamically adjusts the particle velocities to maintain the target
temperature. Thus, the velocity is updated via the following term

dvi

dt
=

Fi

mi

− ξvi (2.11)

where vi is the velocity of particle i , Fi is the force acting on particle i , mi is the
mass of the particle, and ξ is the friction coefficient or thermostat variable.

Then ξ is updated as follows

dξ

dt
=

1

Q

(∑
i

miv
2
i

3NkBT
− 1

)
(2.12)

where Q is the thermal inertia parameter (which controls how strongly the system
is coupled to the thermostat), N is the number of particles, and kB is the Boltzmann
constant.

The Nose-Hoover thermostat can be realized in the following Python Code.

36 Atomistic Simulation in Materials Modeling

1 import numpy as np

2

3 # Thermostat variables

4 Q = 100.0

5 xi = 0.0

6

7 # Initialization

8 R = Initialize_positions ()

9 V = Initialize_velocities ()

10 F = calculate_forces(R)

11

12 # Main MD loop

13 for step in range(num_steps):

14

15 # Verlet -like integration

16 R += V * TIMESTEP + 0.5 * F * TIMESTEP **2 / MASS

17 F_new = calculate_forces(R)

18

19 # Update velocities

20 V += 0.5 * (F + F_new) * TIMESTEP / MASS

21 V *= (1 - 0.5 * xi * TIMESTEP) / (1 + 0.5 * xi * TIMESTEP)

22

23 # Update the Nose -Hoover thermostat variable

24 kE= 0.5 * np.sum(mass * V**2)

25 xi += dt * (2 * kE / (3 * N * k_B * T) - 1) / Q

2.7. Code Implementation

Following the numerical instructions, three thermostat functions (anderson thermostat,
langevin thermostat, nose hoover thermostat can be created as follows. They es-
sentially modify or replace the verlet integration function.

1 import numpy as np

2

3 def anderson_thermostat(V, nu =0.5):

4 """

5 Anderson thermostat

6 """

7 sigma = np.sqrt(KB * TEMPERATURE / MASS)

8 # Randomly assign new velocities

9 lists = []

10 for i in range(len(V)):

11 if np.random.rand() < nu:

12 V[i] = np.random.normal(0, sigma , 3)

13 lists.append(i)

14

15 return V

16

17 def langevin_thermostat(R, V, F, L, gamma):

18 """

19 Langevin thermostat

20 """

21 # Update R

22 R += V * TIMESTEP + 0.5 * F/MASS * TIMESTEP ** 2

23 R = R % L

24

CHAPTER 2. THERMOSTAT IN THE NVT ENSEMBLE 37

25 # Update velocities with deterministic part

26 V += 0.5 * F * TIMESTEP / MASS

27

28 # Apply friction and random force (stochastic part)

29 V -= gamma * V * TIMESTEP

30 sigma = np.sqrt(2 * gamma * KB * TEMPERATURE / MASS)

31 V += np.random.randn(len(V), 3) * np.sqrt(TIMESTEP) * sigma

32

33 # Update forces

34 PE , F_new = LJ_energy_forces(R, L)

35 V += 0.5 * (F + F_new) / MASS * TIMESTEP

36 F = F_new

37

38 return R, V, F

39

40 def nose_hoover_thermostat(R, V, F, xi , L, Q):

41 """

42 Nose -Hoover thermostat

43 """

44 # Update R

45 R += V * TIMESTEP + 0.5 * F/MASS * TIMESTEP ** 2

46 R = R % L

47

48 # Update forces

49 PE , F_new = LJ_energy_forces(R, L)

50 V += 0.5 * (F + F_new) / MASS * TIMESTEP

51 V *= (1 - 0.5 * xi * TIMESTEP) / (1 + 0.5 * xi * TIMESTEP)

52

53 # Update xi

54 KE = 0.5 * np.sum(V**2) * MASS

55 xi += TIMESTEP * (2 * KE / (3 * len(R) * KB * TEMPERATURE) - 1) / (

Q*MASS)

56

57 # Update forces

58 F = F_new

59 return R, V, F, xi

In addition, I created another function MD to allow the specification of MD simulation
under different choices of integration routines. The function simulates the dynamics of
particles in a system over a given number of steps, applying specified thermodynamic
controls to maintain the desired ensemble.

1

2 def MD(thermostat=None , nu=0.1, gamma=1e+13, Q=1.0, num_steps =500):

3 """

4 Run MD simulation

5

6 Args:

7 thermostat (str): "Langevin", "Anderson", "Nose -Hoover" or None

8 nu (float): Anderson thermostat parameter

9 gamma (float): Langevin thermostat parameter

10 Q (float): Nose -Hoover thermostat parameter

11 num_steps (int): Number of steps to simulate

12 """

13 # Initialize system

14 R = initialize_position(L)

15 V = initialize_velocity(N)

16 E, F = LJ_energy_forces(R, L)

38 Atomistic Simulation in Materials Modeling

17 KEs = []

18 PEs = []

19 TEs = []

20 xi = 0.0 # Used by Nose -Hoover

21

22 # MD propogation

23 for step in range(num_steps):

24 if thermostat == "Nose -Hoover":

25 R, V, F, xi = Nose_Hoover_thermostat(R, V, F, xi , L, Q)

26 elif thermostat == "Langevin":

27 R, V, F = langevin_thermostat(R, V, F, L, gamma)

28 else:

29 R, V, F = verlet_integration(R, V, F, L)

30 if thermostat == "Anderson":

31 V = anderson_thermostat(V, nu)

32

33 # Compute PE , KE , and TE

34 PE , _ = LJ_energy_forces(R, L)

35 KE = 0.5 * np.sum(V**2) * MASS

36 KEs.append(KE)

37 PEs.append(PE)

38 TEs.append(PE+KE)

39 if step % 10 == 0:

40 s = np.exp(-xi * TIMESTEP)

41 print(f"Step {step:6d}, PE: {PE:.5e} KE: {KE:.5e} E: {PE+KE

:.5e} s: {s:.4f}")

42 return KEs , PEs , TEs

43

44

45 if __name__ == "__main__":

46 results = []

47 for thermostat in ["Anderson", "Langevin", "Nose -Hoover", None]:

48 print(f"Simulation with {thermostat} thermostat")

49 KEs , PEs , TEs = MD(thermostat=thermostat , num_steps =1500)

50 results.append ((thermostat , KEs , PEs , TEs))

51

52 for result in results:

53 thermostat , KEs , PEs , TEs = result

54 if thermostat is None: thermostat = "NVE"

55 plt.plot(KEs , label=thermostat , alpha =0.8)

56 plt.legend ()

57 plt.xlabel(’Timestep ’)

58 plt.xlim([0, 1500])

59 plt.ylabel(’Kinetic Energy (J)’)

60 plt.savefig(’lec_02_nvt_nve.png’)

In the main block, the MD simulation is run for each thermostat type (Anderson,
Langevin, Nose-Hoover, and NVE). The results, including kinetic, potential, and total
energy values for each thermostat, are stored in the list of results.

Last, the code plots the kinetic energy versus time step for each thermostat method.
The corresponding plot is shown in Fig. 2.5. Compared to the NVE simulation, we can
clearly see that all three NVT thermostat simulation converge their kinetic energy to
about the same value (corresponding to the target temperature 94.4 K).

Comparing different thermostat models, each one has unique strengths: Anderson
is computationally efficient, Langevin offers a closer physical representation of thermal
interactions. In both Anderson and Langevin thermostats, we can see that the kinetic

CHAPTER 2. THERMOSTAT IN THE NVT ENSEMBLE 39

0 200 400 600 800 1000
Timestep (fs)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
K

in
et

ic
 E

ne
rg

y
(J

)

1e 18

Anderson
Langevin
Nose-Hoover
NVE

Figure 2.5: The comparison of different thermostats for liquid Argon at 94.4 K.

energy quickly approach to the desired values and then fluctuate around it. On the other
hand, the Nose-Hoover undergoes several rounds of stronger fluctuation and then ap-
proach to the desired values. The Nose-Hoover approach ensures more accurate ensemble
sampling, making it especially suitable for studies requiring precise temperature control
over time.

2.8. Summary

In this chapter, we introduced the concept of thermostats within the NVT ensemble,
essential for simulating systems where temperature control is required. We began with
the motivation behind using thermostats and explored two intuitive methods: the Ander-
son and Langevin thermostats. The Anderson thermostat, based on stochastic velocity
reassignment, is computationally straightforward but may disrupt realistic particle dy-
namics. The Langevin thermostat, in contrast, incorporates friction and random forces,
simulating more natural energy exchange with a thermal bath and providing continuous
temperature control.

We then expanded on the need for a more rigorous temperature-control mechanism,
introducing the Nosé-Hoover thermostat. This method incorporates an additional degree
of freedom, maintaining temperature without arbitrary velocity reassignment by coupling
the system to an effective heat reservoir.

Finally, we implemented these thermostats in Python, comparing their performance in
controlling the kinetic energy of a simulated liquid argon system. The results, visualized
in Fig. 2.5, illustrate how each thermostat maintains a steady kinetic energy level, vali-

40 Atomistic Simulation in Materials Modeling

dating their effectiveness. This exploration provides a foundation for using thermostats
in molecular dynamics simulations, enabling accurate temperature control in studies of
temperature-dependent material properties.

3. Barostat in the NPT ensemble

3.1. Motivation

In the previous lecture, we introduced temperature control, enabling simulations within
the canonical ensemble (NVT), where the system maintains a constant temperature by
exchanging heat with an external reservoir. This setup allows for more realistic modeling
by simulating temperature effects. However, the NVT ensemble still has some limitations.
For instance, if you want to model a periodic system at various temperatures, it is natural
to consider how thermal expansion affects the system’s volume.

Within the NVT ensemble, one has to manually adjust the volume to match the
expected thermal expansion for each temperature, a process that can be tedious and
requires trial-and-error. Ideally, we want a solution that allows the system to adjust its
volume automatically during the MD simulation, responding dynamically to temperature
changes.

To address this challenge, we introduce the concept of a barostat (see Fig. 3.1), which
functions similarly to a thermostat. While a thermostat maintains a constant tempera-
ture, a barostat adjusts the simulation box dimensions and particle positions to ensure
that the system stays at the desired pressure. This approach is essential for simulating
ensembles like NPT, where both temperature and pressure fluctuations are controlled,
making it possible to study realistic material behavior under various temperature and
pressure conditions. In the following sections, we will explore two widely used barostat
techniques.

Fixed N , P , T

Barostat

Pressure Control
Contracts Contracts

Expands

Expands

Figure 3.1: The schematic NPT ensemble.

41

42 Atomistic Simulation in Materials Modeling

3.2. The Berendsen Barostat

This is a simple barostat that rescales the simulation box gradually toward the target
pressure. To implement a barostat, the key idea is to adjust the simulation box size in
response to the difference between the current pressure and the target pressure. This is
done by scaling the box dimensions and particle positions, and updating the system’s
volume accordingly.

1. Compute the instantaneous pressure. The system pressure P in an MD sim-
ulation can be calculated using the virial equation. It includes contributions from
the kinetic energy (related to ideal gas) and the virial of the system (related to
particle interactions):

P =
NkBT

V
+

1

3V

∑
i<j

rij · Fij (3.1)

=
1

3V

[∑
i

mv2i +
∑
i<j

rij · Fij

]
,

where:

• N is the number of particles.

• kB is the Boltzmann constant.

• T is the temperature.

• V is the volume of the simulation box.

• rij is the position vector between particles i and j.

• Fij is the force acting on particle i due to particle j.

• mi is the mass of particle i.

2. Compute pressure difference. At each time step, calculate the difference be-
tween the current and target pressures (P − Ptarget).

3. Adjust the simulation box volume. For isotropic pressure control (same scaling
in all directions), the new volume is updated by:

Vnew = Vold

(
1 +

∆P

τP
· dt
)

(3.2)

Where:

• τP is a time constant controlling the pressure coupling strength.

• dt is the time step.

• Vold is the current volume.

CHAPTER 3. BAROSTAT IN THE NPT ENSEMBLE 43

4. Rescale the positions and velocities. The positions of all particles are scaled
accordingly to maintain their relative distances within the simulation box. For
isotropic scaling, each position r is rescaled:

rnew = rold ·
(
Vnew
Vold

)1/3

(3.3)

The Python code should look like the following:

1 import numpy as np

2

3 def compute_virial_pressure(R, V, volume):

4 """

5 Compute the pressure using the virial equation.

6

7 Parameters:

8 R (np.array): N * 3 array of particle positions.

9 V (np.array): N * 3 array of particle velocities.

10 volume (float): Volume of the simulation box.

11

12 Returns:

13 float: Computed pressure of the system.

14 """

15 # Number of particles

16 N = len(positions)

17

18 # Kinetic contribution to the pressure

19 P_kinetic = MASS * np.sum(V**2)

20

21 # Virial contribution to the pressure

22 P_virial = 0.0

23 for i in range(N):

24 for j in range(i + 1, N):

25 r_ij = R[i] - R[j] # Displacement vector

26 F_ij = forces[i] # Force on particle i due to j

27 P_virial += r_ij @ F_ij # Dot product r_ij*F_ij

28

29 # The sum of kinetic and virial contributions

30 P = (P_kinetic + P_virial) / (3 * volume)

31

32 return P

33

34 def Berendsen_barostat(R, V, F, volume , P_target , tau_P):

35 """

36 The Berendsen barostat used to adjust volume and positions.

37

38 Args:

39 R (np.ndarray): particle positions (N, 3)

40 V (np.ndarray): particle velocities (N, 3).

41 F (np.ndarray): forces acting on each particle (N, 3).

42 volume (float): Current volume of the simulation box.

43 P_target (float): Target pressure for the system.

44 tau_P (float): Time constant for pressure coupling

45

46 Returns:

47 R (np.ndarray): Adjusted particle positions after rescaling.

48 V (np.ndarray): Adjusted particle velocities after rescaling.

44 Atomistic Simulation in Materials Modeling

49 volume (float): Updated volume of the simulation box.

50 """

51

52 # Calculate current pressure

53 P = compute_virial_pressure(R, V, volume)

54

55 # Calculate the scaling factor

56 dP = P - P_target

57 scale_factor = 1.0 + (dP / tau_P) * TIMESTEP

58 volume *= scale_factor

59 rescale_factor = scale_factor ** (1.0 / 3.0)

60

61 # rescale positions and velocities

62 R *= rescale_factor

63 V *= rescale_factor

64

65 return R, V, volume

This is a relatively simple method, where the system’s volume is gradually rescaled
to match the target pressure. It does not rigorously conserve the ensemble, but it is com-
putationally efficient and often used for equilibration runs for the simulation of isotropic
systems like liquid.

3.3. The Parrinello-Rahman Barostat

The Parrinello-Rahman barostat is a more advanced method for controlling pressure
in MD simulations, particularly useful when the system undergoes anisotropic volume
changes [9]. Unlike Berendsen barostat that scales the simulation box isotropically, the
Parrinello-Rahman barostat allows both the shape and size of the simulation box to
change. This is especially important in simulations of materials under strain, phase
transitions, or when dealing with anisotropic systems like crystals.

It involves the following steps.

1. Matrix Representation of box. To enable this barostat, we first represent
simulation box by a matrix h that defines the three lattice vectors of the simulation
box. This matrix allows for changes in both the box size and shape.

h =

ax bx cx
ay by cy
az bz cz


Here, a, b, and c are the lattice vectors.

2. Pressure Tensor: The barostat works with the full pressure tensor P, which
describes how pressure acts differently along different directions. The pressure
tensor P can be computed from the system’s kinetic energy and virial:

P =
1

V

(∑
i

mivi ⊗ vi +
∑
i

ri ⊗ Fi

)
(3.4)

This equation can be considered as a tensorial version of eq. 3.1.

CHAPTER 3. BAROSTAT IN THE NPT ENSEMBLE 45

3. Strain Rate Tensor W. The time evolution of the box matrix h is governed by
the equation:

ḣ = h ·W (3.5)

where W is the strain rate tensor, which determines how the box evolves over time.

dW

dt
=

1

Q
(P− PtargetI) (3.6)

Here, Q is the fictitious barostat mass, and PtargetI is the target pressure tensor.

4. Update Particle Positions and Box. Once h is updated, the particle positions
need to be rescaled by the new box matrix. The rescaled positions are calculated
as:

ri = h · si (3.7)

In short, this approach introduces a few additional variables:

1. h: The simulation box matrix, which evolves over time and controls both the size
and shape of the box.

2. Q: The fictitious mass associated with the barostat, controlling the rate of volume
and shape changes.

3. W: The strain rate tensor, which governs how the box matrix changes over time.

These variables allow the Parrinello-Rahman barostat to apply pressure anisotropi-
cally, enabling the box to deform naturally while maintaining the target pressure in the
system.

Below is a Python code to achieve the Parrinello-Rahman barostat.

1 import numpy as np

2

3 def compute_pressure_tensor(R, V, volume):

4 """

5 Compute the internal pressure tensor using the virial equation.

6

7 Parameters:

8 R (np.array): N * 3 array of particle positions.

9 V (np.array): N * 3 array of particle velocities.

10 volume (float): Volume of the simulation box.

11

12 Returns:

13 np.array: 3 * 3 pressure tensor.

14 """

15

16 # Number of particles

17 N = len(positions)

18

19 # kinetic energy contribution to the pressure

20 P_kinetic = MASS * np.sum(V**2)

21

46 Atomistic Simulation in Materials Modeling

22 # virial contribution to the pressure tensor

23 P_virial = np.zeros ((3, 3))

24 for i in range(N):

25 for j in range(i + 1, N):

26 r_ij = R[i] - R[j] # Displacement vector

27 F_ij = forces[i] # Force on particle i (be careful)

28 P_virial += np.outer(r_ij , F_ij)

29

30 # The sum of kinetic and virial contributions

31 P_total = (P_kE * np.eye (3) + P_virial) / volume

32 return P_total

33

34 def parrinello_rahman_barostat(H, R, V, P_target , Q):

35 """

36 Update the box and positions using Parrinello -Rahman barostat.

37 """

38

39 # Compute current pressure tensor

40 volume = np.linalg.det(H) # Current volume

41 P = compute_pressure_tensor(R, V, volume)

42

43 # Compute strain rate tensor (dW/dt)

44 W_dot = (P - P_target) / Q

45

46 # Update the box matrix h

47 h_new = h + h @ W_dot * dt

48

49 # Rescale the positions to fractional coordinates

50 R = R @ np.linalg.inv(h) @ h_new

51

52 return R, h_new

3.4. NPT Code Implementation

In this section, we simulate the liquid Argon with an intentionally overestimated volume
and then run both NVT and NPT simulations to study the impact of barostat techniques.
One should find that the code quite follows what we have described in the previous
chapters, except the addition of Berendsen barostat function to allow the control of
volume during the MD simulation.

1 import numpy as np

2 from numba import njit

3 import matplotlib.pyplot as plt

4

5 def initialize_position(L):

6 """

7 Initialize positions in a 6*6*6 of the FCC unit cell

8

9 Args:

10 L (float): unit length of the cubic box

11

12 Returns:

13 R (float) : (4*6*6*6 , 3) array

14 """

15 # FCC unit cell fractional positions

16 r = np.array ([

CHAPTER 3. BAROSTAT IN THE NPT ENSEMBLE 47

17 [0.0, 0.0, 0.0],

18 [0.5, 0.5, 0.0],

19 [0.5, 0.0, 0.5],

20 [0.0, 0.5, 0.5]

21])

22 a = L/6

23

24 r *= a

25 R = []

26 for i in range (6):

27 for j in range (6):

28 for k in range (6):

29 R.extend(r + np.array ([i, j, k])*a)

30 return np.array(R)

31

32 def initialize_velocity(N):

33 """

34 Initialize velocities using Maxwell -Boltzmann distribution

35

36 Args:

37 N (int): Number of atoms

38

39 Returns:

40 V (float) : (N, 3) array

41 """

42 # Standard deviation of the velocity distribution

43 sigma = np.sqrt(TEMPERATURE * KB / MASS)

44 V = np.random.normal(0, sigma , (N, 3))

45

46 # Center the velocities

47 V -= np.mean(V, axis =0)

48 return V

49

50 @njit

51 def LJ_energy_forces_stress(R, L):

52 """

53 Compute the energy and forces from the given system

54

55 Args:

56 R (float) : (N, 3) array

57 L (float): unit length of the cubic box

58

59 Returns:

60 PE (float): total energy

61 F (float): atomic forces [N, 3] array

62 P (float): P_virial

63 """

64 N = len(R) # Number of atoms as a scalor

65 F = np.zeros_like(R) # forces [N, 3] as a 2D array

66 PE = 0.0 # total potential energy as a scalor

67 P_virial = 0.0 # if stress is on

68

69 for i in range(N-1):

70 for j in range(i + 1, N):

71 # Compute R between (i, j)

72 r_vec = R[i] - R[j]

73 r_vec -= np.round(r_vec / L) * L # Peridoic condition

74 r = np.linalg.norm(r_vec)

48 Atomistic Simulation in Materials Modeling

75

76 # Compute the potential Energy

77 R6 = (SIGMA / r) ** 6

78 R12 = R6 ** 2

79 PE += 4 * EPSILON * (R12 - R6)

80

81 # Compute and update forces

82 force = 24 * EPSILON * (2 * R12 - R6) / r ** 2

83 force_vec = r_vec * force

84 F[i] += force_vec

85 F[j] -= force_vec

86

87 # Compute the virial stress

88 P_virial += np.dot(r_vec , force_vec)

89

90 return PE , F, P_virial

91

92 def Nose_Hoover_thermostat(R, V, F, xi , L, Q):

93 """

94 Nose -Hoover thermostat

95 """

96 # Update R

97 R += V * TIMESTEP + 0.5 * F/MASS * TIMESTEP ** 2

98 R = R % L

99

100 # Update forces

101 PE , F_new , P_virial = LJ_energy_forces(R, L)

102 V += 0.5 * (F + F_new) / MASS * TIMESTEP

103 V *= (1 - 0.5 * xi * TIMESTEP) / (1 + 0.5 * xi * TIMESTEP)

104

105 # Update xi

106 KE = 0.5 * np.sum(V**2) * MASS

107 xi += TIMESTEP * (2 * KE / (3 * len(R) * KB * TEMPERATURE) - 1) / (

Q*MASS)

108

109 # Update forces

110 F = F_new

111 return R, V, F, xi , PE , P_virial

112

113 def Berendsen_barostat(R, V, L, P_virial , tau_P):

114 """

115 Adjust volume and positions to maintain constant pressure.

116 Compute the scalor pressure using the virial equation.

117

118 Args:

119 R (np.array): N * 3 array of particle positions.

120 V (np.array): N * 3 array of particle velocities.

121 L (float): volume of the simulation box

122

123 Returns:

124 Updated R, V, L

125 """

126 volume = L ** 3

127 P = compute_pressure(R, V, volume , P_virial)

128 dP = P - PRESSURE

129 scale_factor = 1.0 + (dP / tau_P) * TIMESTEP

130

131 # Rescale positions and velocities

CHAPTER 3. BAROSTAT IN THE NPT ENSEMBLE 49

132 rescale_factor = scale_factor ** (1.0 / 3.0)

133 R *= rescale_factor

134 V *= rescale_factor

135 L *= rescale_factor

136 return R, V, L, P

137

138 def MD(L0 , barostat=None , Q=1.0, tau_P =0.1, num_steps =500):

139 """

140 Run MD simulation

141

142 Args:

143 barostat (str): "Berendsen", "" or None

144 Q (float): Nose -Hoover thermostat parameter

145 num_steps (int): Number of steps to simulate

146 """

147 # Data to monitor

148 KEs , PEs , TEs , Pressures , Volumes = [], [], [], [], []

149

150 # Initialize system

151 xi = 0.0 # Used by Nose -Hoover

152 L = L0

153 R = initialize_position(L)

154 V = initialize_velocity(N)

155 E, F, P_virial = LJ_energy_forces_stress(R, L)

156

157

158 # MD propogation

159 for step in range(num_steps):

160 # Thermostat

161 R, V, F, xi , PE , P_virial = Nose_Hoover_thermostat(R, V, F, xi ,

L, Q)

162

163 if barostat == "Berendsen":

164 R, V, L, P = Berendsen_barostat(R, V, L, P_virial , tau_P)

165 else:

166 # Compute pressure

167 P_KE = MASS * np.sum(V**2)

168 P = (P_KE + P_virial) / (3 * L**3)

169

170 # Compute PE , KE , and TE

171 KE = 0.5 * np.sum(V**2) * MASS

172 vol = L**3

173

174 KEs.append(KE)

175 PEs.append(PE)

176 TEs.append(PE+KE)

177 Volumes.append(vol)

178 Pressures.append(P)

179

180 if step % 10 == 0:

181 E = KE + PE

182 print(f"{step:4d}{PE:12.4e}{KE:12.4e}{E:12.4e}{vol:.5e}")

183

184 return KEs , PEs , TEs , Volumes ,

185 Pressures

186

187 if __name__ == "__main__":

188

50 Atomistic Simulation in Materials Modeling

189 # Parameters

190 KB = 1.3806452 * 1e-23 # Boltzmann constant in J/K

191 TEMPERATURE = 94.4 # in K

192 PRESSURE = 101325 # in pascal

193 EPSILON = 120.0 * KB # in J (epsilon = 120 * k_B)

194 SIGMA = 3.4 * 1e-10 # in meters (3.4 Angstrom)

195 MASS = 39.95*1.6747*1e-27 # mass of Argon atom in kg

196 L0 = 10.229 * SIGMA # cubic box side length

197 N = 864 # Number of atoms

198 TIMESTEP = 1.0 * 1e-14 # time step in seconds

199

200 results = []

201 for params in [("Large Volume", 1.05*L0 , None , None),

202 ("Large Volume", 1.05*L0 , "Berendsen", 0.001)]:

203

204 (tag , L, barostat , tau_P) = params

205 print(f"Simulation with {barostat} barostat {tag}")

206 KEs , PEs , TEs , Vs , Ps = MD(L, barostat=barostat , tau_P=tau_P ,

num_steps =2000)

207 results.append ((tag , barostat , KEs , PEs , TEs , Vs , Ps))

208

209 fig , axs = plt.subplots(2, len(results), figsize =(16, 6))

210 for i, result in enumerate(results):

211 (tag , barostat , KEs , PEs , TEs , Vs, Ps) = result

212 if barostat is None:

213 barostat = "NVT"

214 else:

215 barostat += " NPT"

216 axs[0, i]. set_title(tag + ’-’ + barostat)

217 axs[0, i].plot(KEs , label="KE")

218 axs[0, i].plot(PEs , label="PE")

219 axs[0, i].plot(TEs , label=’Total’)

220 axs[0, i]. set_ylim ([-1.0e-17, 0.3e -17])

221 axs[0, i]. set_ylabel("Energy")

222

223 ax_vol = axs[1, i]

224 ax_pre = ax_vol.twinx()

225 ax_vol.plot(Vs , color="b")

226 ax_pre.plot(Ps , color="r")

227 ax_vol.set_ylabel("Volume", color="b")

228 ax_vol.tick_params(axis="y", labelcolor="b")

229 ax_pre.set_ylabel("Pressure", color="r")

230 ax_pre.tick_params(axis="y", labelcolor="r")

231 ax_vol.set_ylim ([3.6e-26, 5.1e -26])

232 ax_pre.set_ylim ([-3.0e+8, 1.2e+8])

233

234 axs[0, i]. set_xlim ([0, 2000])

235 axs[1, i]. set_xlim ([0, 2000])

236 axs[0, i].grid(False)

237 ax_vol.grid(False)

238 ax_pre.grid(False)

239

240 plt.savefig("lec_03 -npt -nvt.pdf")

In the end, it generates a 2× 2 subplots as shown in Fig. 3.2, in which each column
describes the evolution of energies in the upper panel and the evolution of volumes and
pressure values in the lower panel for regular NVT and Berendesen NPT simulations,
respectively. As compared to the NVT setup, the consideration of Berendsen barostat

CHAPTER 3. BAROSTAT IN THE NPT ENSEMBLE 51

0 500 1000 1500 2000
1.0

0.8

0.6

0.4

0.2

0.0

0.2
E

ne
rg

y
1e 17 NVT

KE
PE
Total

0 500 1000 1500 2000
1.0

0.8

0.6

0.4

0.2

0.0

0.2

E
ne

rg
y

1e 17 Berendsen NPT

KE
PE
Total

0 500 1000 1500 2000

3.75

4.00

4.25

4.50

4.75

5.00

Vo
lu

m
e

1e 26

0 500 1000 1500 2000

3.75

4.00

4.25

4.50

4.75

5.00

Vo
lu

m
e

1e 26

3

2

1

0

1

P
re

ss
ur

e

1e8

3

2

1

0

1

P
re

ss
ur

e

1e8

Figure 3.2: The comparison of NVT and NPT simulation of liquid argon.

can effectively adjust the volume by itself according to the target pressure condition, thus
providing more realistic modelling of the system.

3.5. Summary

In this chapter, we introduced how to implement pressure control (barostat) in the con-
text of MD simulations. Similar to temperature control, the key lies in assigning an
appropriate updating rule for the simulation cell. For isotropic systems such as liquids or
gases, the Berendsen barostat provides an efficient method for pressure regulation. On
the other hand, the Parrinello-Rahman barostat is well-suited for anisotropic systems,
such as solids, where the lattice can deform in response to stress.

Finally, we implemented the Berendsen barostat in Python to simulate liquid argon.
By comparing the results with established methods, the implementation demonstrates
accuracy and efficiency in pressure control. This exploration provides a solid foundation
for incorporating barostats into MD simulations, complementing thermostats to enable
accurate modeling of pressure- and temperature-dependent material properties.

52 Atomistic Simulation in Materials Modeling

4. MD Simulation with LAMMPS

4.1. Introduction to LAMMPS

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is an open-source
software tool designed for performing classical MD simulations. It can be used to model
an array of particle interactions, ranging from simple atomic systems to complex mate-
rials and biomolecular systems. As one of the most popular materials simulation pack-
ages, LAMMPS is specifically optimized for large-scale simulations, which involve millions
to billions of particles, making it suitable for high-performance computing (HPC) envi-
ronments. Its versatility allows for simulations of a variety of systems such as metals,
polymers, proteins, and membranes. Some typical applications include:

• Crystal Defects and Deformation: (e.g., dislocation motion, grain boundary
evolution, and fracture in materials).

• Phase Transitions: Simulating phase changes in metals and alloys, such as melt-
ing, solidification, or the formation of microstructures.

• Transport properties of materials via Green-Kubo or direct methods.

• Mechanical Properties such as stress-strain relationships, elasticity, and plastic-
ity at the atomic scale.

• Drug Interactions: Simulating how drug molecules interact with proteins or other
biological targets.

4.2. Why is LAMMPS Efficient?

LAMMPS is designed to perform large-scale simulations by taking advantage of parallel
computing architectures, including multi-core processors and HPC clusters. In partic-
ular, LAMMPS uses the domain decomposition technique to divide the simulation space
into subdomains. Each processor or core is assigned to a subdomain, and they work
together by communicating boundary conditions and interacting forces. LAMMPS also uses
Message Passing Interface (MPI) to handle communication between processors, ensuring
minimal overhead and efficient data transfer during the simulation. Thanks to these con-
siderations, LAMMPS has demonstrated excellent scalability across thousands of processors,
which makes it suitable for simulating systems with millions to billions of particles over
long time scales.

The use of neighbor list reduces computational cost by avoiding direct distance cal-
culations between all possible pairs of particles (scaling as O(N2)). Then it is updated

53

https://www.lammps.org

54 Atomistic Simulation in Materials Modeling

periodically based on a user-specified frequency. The distance moved by particles since
the last update (must remain within the skin distance).

In parallel simulations, neighbor lists are constructed locally on each processor. This
ensures that each processor maintains neighbor lists for particles it owns and for ghost
atoms (particles in neighboring subdomains). Communication between processors ensures
that ghost atom data is up to date.

4.3. Input and Output Files

After you compile the LAMMPS code into an executable (often called lmp serial or lmp mpi

by default), the following command can be used to invoke a calculation on your local
computer terminal.

path_to_lmp_mpi < lmp.in > lmp.out

This command involves the preparation of input and output that will be discussed as
follows.

4.3.1 LAMMPS Input Files

LAMMPS simulations are controlled by input script (often called lmp.in), which consists of
a series of commands written in a simple text format. These scripts define the simulation
parameters, system setup, and specific instructions for running the simulation. A typical
LAMMPS input script is organized into several key sections:

Initialization Section to include the units/boundary conditions/atom styles.

• units real: units for physical quantities (e.g., distance in angstroms).

• boundary p p p: periodic boundary conditions in all three dimensions.

• atom style atomic: how atoms are represented (e.g., atomic).

Atom Definition Section to includes atomic coordinates/initial velocities.

• read data data.file: reads the atomic configuration from a file.

• velocity all create 300.0 12345: random initial velocities at 300 K

Force Field Definition Section to defines the force field parameters

• pair style lj/cut 2.5: LJ potential with a cutoff distance of 2.5.

• pair coeff * * 0.1 3.0: LJ coefficients (epsilon and sigma)

Simulation Parameters Section to define timestep/temperature/pressure.

• timestep 1.0: Time step for integration for the given time unit

• fix 1 all nve: Applies a NVE ensemble to all atoms.

CHAPTER 4. MD SIMULATION WITH LAMMPS 55

Output Control Section for frequency and format of the output.

• thermo 100: Prints data (e.g., temperature) every 100 steps.

• dump 1 all atom 1000 dump.atom: Outputs positions every 1000 steps.

Run Section to invoke the actual iterative simulation.

• run 10000: Runs the simulation for 10,000 timesteps.

• minimize 1.0e-4 1.0e-6 1000 10000: Energy minimization.

4.3.2 LAMMPS Output Files

Log files are an essential output generated by the LAMMPS during a simulation run.
They record detailed information about the simulation process, including configuration
details, computational settings, and simulation results. The log file serves as a useful
resource for debugging, analyzing results, and verifying the simulation’s correctness.

Dump files store detailed trajectory information about the system’s atomic coordinates,
velocities, and forces. These files are typically used for post-processing to analyze system
configurations, create visualizations, or calculate structural properties.

Restart Files store the entire state of a simulation, allowing users to pause and later
continue a simulation from where it left off. These files contain information about the
atom positions, velocities, forces, and other system properties.

4.4. Simulation Process

Below is a minimal script to simulate argon atoms using the Lennard-Jones potential as
we discussed in the previous lectures:

units real

atom_style atomic

read_data argon.data

pair_style lj/cut 2.5

pair_coeff * * 0.238 3.4 # LJ potential for argon

velocity all create 300.0 12345

fix 1 all nvt temp 300.0 300.0 100.0 # NVT ensemble at 300 K

timestep 1.0 # Time step of 1.0 fs

run 50000 # Run 50,000 timesteps

4.5. Post-Processing

After a simulation, the results need to be visualized and analyzed. LAMMPS produces sev-
eral types of output files, which contain thermodynamic data, atom positions, velocities,
and forces. VMD (Visual Molecular Dynamics) and OVITO (Open Visualization Tool)
are popular tools for visualizing molecular dynamics simulations.

https://www.ks.uiuc.edu/Research/vmd/
https://www.ovito.org

56 Atomistic Simulation in Materials Modeling

4.6. Running LAMMPS on HPC

For most research projects, running LAMMPS on a HPC environment is essential for large-
scale simulations that require significant computational resources. Most modern super-
computers use job schedulers like SLURM to manage computational tasks.

#!/bin/bash

#SBATCH --job-name=lammps_job # Job name

#SBATCH --nodes=4 # Number of nodes

#SBATCH --ntasks-per-node=32 # Number of processes per node

#SBATCH --time=24:00:00 # Max time limit (HH:MM:SS)

#SBATCH --partition=compute # Partition or queue to submit to

#SBATCH --output=job_output.log # Output log file

module load lammps/3Mar2020 # Load LAMMPS module

mpirun -np 128 lmp_mpi -in file.in # Run LAMMPS with 128 processes

• SBATCH {options are used to specify the number of nodes, tasks, job name, and
time limit.

• mpirun -np 128 launches the calculation across 128 processes in parallel, ensuring
that the simulation scales across multiple cores.

• lmp mpi is the parallel version of LAMMPS used for multi-node execution.

4.7. MD simulations of Argon via LAMMPS

In general, LAMMPS can be compiled and installed on various platforms, including personal
computers, HPC clusters, and cloud-based environments. For instructional purposes,
we will use the Google Colab Jupyter Notebook environment to demonstrate the setup
process.

First, LAMMPS can be installed in Google Colab using the following commands:

Installing LAMMPS in Google Colab

!sudo apt-get update
!sudo apt-get install -y lammps

These commands will install the LAMMPS package along with its required dependen-
cies. After installation, you can verify whether LAMMPS has been successfully installed
by running the following command:

Verifying LAMMPS Installation

!lmp -h

This will print the LAMMPS help message, which confirms that the installation was
successful and provides an overview of available commands and options. If LAMMPS is not
installed correctly, the output will indicate the issue, and you may need to troubleshoot
or reinstall.

CHAPTER 4. MD SIMULATION WITH LAMMPS 57

Next one can prepare the LAMMPS input files and execute the command as follows.

1 # Define the LAMMPS BASE input script as strings

2 BASE = """

3 # Units

4 units lj

5 atom_style atomic

6

7 # Box and Atoms

8 lattice fcc 0.8442

9 region box block 0 10 0 10 0 10

10 create_box 1 box

11 create_atoms 1 box

12

13 mass 1 39.95

14 velocity all create 1.44 87287 loop geom

15

16 # Force Field

17 pair_style lj/cut 2.5

18 pair_coeff 1 1 1.0 1.0 2.5

19

20 # Control of neighbor calculations

21 neighbor 0.3 bin

22 neigh_modify every 20 delay 0 check no

23

24 # Output

25 thermo 100

26 dump 1 all atom 50 dump.lammpstr

27 """

28

29 # Create the lammps input file

30 with open("lmp_nve.in", "w") as file:

31 file.write(BASE + "\n")

32 file.write("fix 1 all nve\n")

33 file.write("RUN 1000\n")

34

35 # Execute the lammps command

36 !lmp < lmp_nve.in > lmp_nve.out

In the above script, we first generate a base input files to set up the system and force
field for a FCC argon. Using the base input, we further added two line to let the system
run 1000 steps with the NVE ensemble. One should observe the following output in the
log file.

LAMMPS (29 Sep 2021 - Update 2)

using 1 OpenMP thread(s) per MPI task

Lattice spacing in x,y,z = 1.6795962 1.6795962 1.6795962

Created orthogonal box = (0.000 0.000 0.000) to (10.077 10.077 10.077)

1 by 1 by 1 MPI processor grid

Created 864 atoms

Per MPI rank memory allocation (min/avg/max) = 3.70 | 3.70 | 3.70 Mbytes

Step Temp E_pair E_mol TotEng Press

0 1.44 -6.7733681 0 -4.6158681 -5.0210763

58 Atomistic Simulation in Materials Modeling

100 0.7520781 -5.7514584 0 -4.624647 0.22224801

200 0.76319587 -5.7681312 0 -4.6246624 0.1876998

300 0.75569127 -5.7576689 0 -4.625444 0.24985373

400 0.71772096 -5.6993903 0 -4.6240549 0.51935749

500 0.71112191 -5.6904918 0 -4.6250435 0.53347476

Loop time of 0.336132 on 1 procs for 500 steps with 864 atoms

Total # of neighbors = 32356

Ave neighs/atom = 37.449074

Neighbor list builds = 25

Dangerous builds not checked

Total wall time: 0:00:00

Finally, one can repeat the NVT and NPT simulations, and analyze the results as we
introduced in previous chapters.

4.8. Summary and Further Tasks

In this chapter, we provided a brief introduction to the LAMMPS package, highlighting
its efficiency, basic setup, and showcasing a simple example to illustrate its functionality.
For further exploration and a deeper understanding of LAMMPS, readers are encouraged
to:

• Explore the implementation of the neighbor list in the LAMMPS source code to un-
derstand how interactions are efficiently managed.

• Review the thermostat and barostat algorithms used in LAMMPS, comparing them
with previous Python implementations discussed in earlier chapters. Key files in
the LAMMPS codebase include:

1. compute pressure.cpp: Computes pressure and related properties.

2. fix press berendsen.cpp: Implements the Berendsen barostat.

3. fix nh.cpp: Implements the Nosé-Hoover thermostat and barostat.

4. pair lj cut.cpp: Handles Lennard-Jones potential with a cutoff.

• Identify and consider the types of MD simulations you would like to explore with
LAMMPS, such as equilibrium or nonequilibrium dynamics, structural transitions, or
transport property calculations.

By delving into these aspects, you can gain a more comprehensive understanding of
LAMMPS and its capabilities, equipping you to tackle a wide range of molecular dynamics
simulations.

https://docs.lammps.org/Developer_par_neigh.html
https://github.com/lammps/lammps/blob/develop/src/compute_pressure.cpp
https://github.com/lammps/lammps/blob/develop/src/fix_press_berendsen.cpp
https://github.com/lammps/lammps/blob/develop/src/fix_nh.cpp
https://github.com/lammps/lammps/blob/develop/src/pair_lj_cut.cpp

5. MD Structural Characterization

So far, we have learned some fundamentals about how to write code and run an MD
simulation to model the atomistic processes of materials. By running the simulation,
we expect to generate a set of time-dependent atomic trajectories by solving Newton’s
equations of motion for a system of particles. Next, it is important to understand these
simulation results. Indeed, it is essential to extract meaningful physical properties from
the simulation results. In this lecture, we will cover several fundamental post-analysis
techniques to understand the structural behaviors from a MD simulation.

5.1. MD Trajectory Visualization

Visualization is an essential tool for analyzing MD simulations. It enables researchers
to visually inspect the system’s dynamics, identify abnormalities, and better understand
atomic movements. Among the various visualization tools available, OVITO is widely
used due to its versatility and user-friendly interface.

When working with MD trajectories, it is crucial to customize the visualization set-
tings to highlight specific features of interest. A universal visualization setting often fails
to reveal detailed information, particularly when dealing with complex systems involving
many atoms. For example:

1. Adjusting Atomic Sizes and Colors: Enhance the visibility of certain atoms by
resizing their spheres or assigning distinct colors based on the atomic properties of
interest (e.g., chemical identity, local coordination numbers, atomic energies, .etc).
This is particularly useful when focusing on specific atomic species or regions.

2. Deemphasizing Bulk Atoms: Suppress the representation of bulk atoms to empha-
size atoms in regions of interest, such as defects, surfaces, or grain boundaries.

3. Drawing Bonds: Visualize bonds between atoms when analyzing molecules or iden-
tifying molecular structures.

4. Dynamic Filtering: Apply filters to isolate specific atomic trajectories, highlight
displacements, or track changes in local environments.

Customizing settings such as coloring schemes, transparency levels, and rendering
styles allows researchers to adapt visualizations to their specific analysis goals. For in-
stance, highlighting atoms near defects or interfaces can reveal critical insights into struc-
tural transitions. This process of tailoring visualization is often referred to as creating a
pipeline, where a series of visualization and processing steps are designed and executed
systematically.

59

https://www.ovito.org

60 Atomistic Simulation in Materials Modeling

Modern visualization software, such as OVITO, further streamlines this process by
allowing users to save and reuse pipelines for other simulations. This feature enables
automation of the visualization process, reducing the reliance on interactive adjustments
and saving considerable time. Additionally, pipelines can be scripted to process large
datasets or batch analyze results efficiently, integrating seamlessly into high-throughput
workflows.

For detailed guidance on OVITO’s advanced capabilities, including property-based fil-
tering, rendering techniques, and pipeline automation, please refer to the documentation
and associated publications. By leveraging these tools, researchers can ensure consistent,
reproducible, and insightful visualizations tailored to their specific scientific needs.

5.2. Radial Distribution Function

While it is always appealing to see the nice images or movies to understand the structural
features and transitions in a subjective manner, we still rely on some metrics to quantify
the structural changes during the simulation. With such metrics, we can minimize the
human bias, detect and measure changes, even those too subtle for the human eye.

One of the most widely used structural metric is the Radial Distribution Function
g(r), which measures the probability of finding a particle at a distance r from a reference
particle.

g(r) =
V

N2

〈
N∑
i=1

N∑
j ̸=i

δ(r − rij)

〉
· 1

4πr2∆r
(5.1)

Where:

• V is the volume of the system.

• N is the number of particles.

• rij is the distance between particles i and j.

• δ(r − rij) is the Dirac delta function ensuring that only pairs with separation rij
equal to r contribute.

• 4πr2∆r is the volume of a spherical shell at distance r with thickness ∆r.

As shown in Fig. 5.1, the computation of RDF involves counting the number of
neighboring atoms within a series of concentric shells around a reference particle, followed
by normalization. This process essentially depicts the spatial distribution of neighboring
particles’ density.

5.2.1 Physical Meaning and Applications

In a solid, the RDF typically exhibits a series of sharp peaks corresponding to well-defined
first, second and third nearest neighboring interatomic distances, reflecting the long-range
periodic order characteristic of crystalline materials. In contrast, in a liquid, the RDF
displays a prominent first peak representing the nearest neighbors, followed by dampened
oscillations, indicative of short-range order but the absence of long-range periodicity.

https://www.ovito.org

CHAPTER 5. MD STRUCTURAL CHARACTERIZATION 61

(a)

r dr

(b)

0 1 2 3 4 5
0

1

2

3

r/σ

g
(r

)

Figure 5.1: (a) Radial distance and shells, (b) Radial distribution function

The RDF is particularly valuable for identifying short-range and long-range structural
order in various phases of matter, such as liquids, solids, and amorphous materials. This
makes it a fundamental tool for understanding structural transitions and correlations
in molecular simulations, enabling researchers to quantify and analyze the underlying
atomic or molecular arrangements with minimal bias.

5.2.2 Computation of RDF

The computation of RDF is very similar to the calculation of energy and forces since
both need to identify the neighbors. The whole process is outlined as in Algo. 2.

Algorithm 2 Compute Radial Distribution Function

1: Start
2: Compute the distance pairs between particles
3: Group distances into bins based on their values
4: Update each bin’s count according to the grouped distances
5: Normalize the counts by dividing each by the number of pairs in the bin
6: Calculate:

1. Total number of pairs

2. Shell Volume: 4πr2∆r

3. Particle Density: N/V

7: End

While the LAMMPS or other main-stream codes can conveniently output the RDF
raw data via some simple commands, we provide a sample Python code below in case
one needs to process RDF manually.

1 def compute_rdf(positions , num_bins =100, r_max =10.0):

2 N = len(positions) # Number of atoms

3 rdf = np.zeros(num_bins)

4 dr = r_max / num_bins

5 for i in range(N):

6 for j in range(i+1, N):

62 Atomistic Simulation in Materials Modeling

7 r = np.linalg.norm(positions[i] - positions[j])

8 if r < r_max:

9 bin_index = int(r / dr)

10 rdf[bin_index] += 2 # Each pair counted twice

11

12 # Normalize RDF

13 r = np.linspace(0, r_max , num_bins)

14 rdf /= (4 * np.pi * r**2 * dr * N)

15 return r, rdf

16

17 # Example usage

18

19 positions = np.random.rand (100, 3) * 10 # Generate random positions

20 r, g_r = compute_rdf(positions)

21

22 # Plot RDF

23

24 plt.plot(r, g_r)

25 plt.xlabel("r (Angstrom)")

26 plt.ylabel("g(r)")

27 plt.title("Radial Distribution Function")

28 plt.show()

RDF is commonly used to characterize the short-range order in liquids and gases. In
a RDF, we are interested in the location of Peaks and their spreads, as they indicate
common interatomic distances (e.g., 1st and 2nd nearest-neighbor distance).

5.3. Vibration Spectrum

In addition to RDF, another essential characterization is understanding how particles in
a system vibrate. Experimentally, such information is obtained using techniques like In-
frared (IR) and Raman Spectroscopy or Inelastic Neutron/X-ray Scattering. In molecular
dynamics (MD) simulations, an analogous measurement is the Vibrational Density of
States (VDOS).

VDOS describes the distribution of vibrational frequencies within a system, providing
insights into the dynamics of atomic motion. By examining an MD trajectory, we observe
that atoms vibrate in various modes, each with different frequencies and amplitudes. How
to calculate the VDOS from MD simulations?

5.3.1 Vibration Frequency of a Single Harmonic Oscillator

We can address this challenge with some simple cases. Let’s imagine the simplest case of
a single harmonic oscillator. The velocity of an atom is related to its position by:

v(t) =
d

dt
r(t) (5.2)

For sinusoidal motion, r(t) = A cos(ωt + ϕ), where A is the amplitude, the velocity
becomes:

v(t) = −Aω sin(ωt+ ϕ) (5.3)

This shows that the velocity oscillates at the same frequency ω as the position but
is phase-shifted. To analyze the vibrational frequency, we compute the power spectrum

CHAPTER 5. MD STRUCTURAL CHARACTERIZATION 63

of the velocity. For a single harmonic oscillator, we can compute the time correlation as
follows,

Cv(t) =
1

T

∫ T

0

v(0)v(t) dt = ⟨v(0)v(t)⟩

In the later expression, the Dirac notation is used to simplify the equation. We call
it velocity autocorrelation function (VACF). Substituting v(t) = −Aω sin(ωt + ϕ),
the VACF becomes:

Cv(t) = ⟨(−Aω sin(ϕ))(−Aω sin(ωt+ ϕ))⟩ = A2ω2⟨sin(ϕ) sin(ωt+ ϕ)⟩

Thus, Cv(t) is a sinusoidal function with a frequency of ω. The Fourier transform of
Cv(t) yields the vibrational density of states (VDOS):

g(ω) =

∫ ∞

−∞
Cv(t)e

−iωtdt

For a single harmonic oscillator, this results in a sharp peak at the natural frequency
ω.

Imagine that there exists two kinds of harmonic motions in the system, g(ω) should
reveal two frequencies at which the velocities oscillate. And the magnitudes of each peak
should tell the intensity of each harmonic motion.

5.3.2 Python Simulation of Harmonic Oscillators

To better understand the concept of VACF and VDOS, we can perform a simple numerical
experiment by simulating two model systems based on the O2 diatomic molecule, as
illustrated in Fig. 5.2. In O2, the equilibrium bond length is approximately 1.16 Å, with
a bond spring constant of k = 1180,N/m.

In the first model, we simulate simple harmonic vibration by initializing the positions
of the atoms with a slight deviation from the equilibrium bond length. In the second
model, we simulate a combination of vibration and rotation by assigning initial velocities
that are misaligned with the bond axis. We then use the following MD code to simu-
late the motions of the molecule and compute the corresponding VACF and Vibrational
Density of States (VDOS).

Pure Harmonic Oscillator Harmonic Oscillator with Rotation

Figure 5.2: Two example harmonic oscillators.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.fftpack import fft

4

5 def harmonic_force(r1 , r2 , k, r_eq):

6 # Function to compute force due to harmonic potential

7 r12 = np.linalg.norm(r2 - r1)

64 Atomistic Simulation in Materials Modeling

8 force_mag = -k * (r12 - r_eq)

9 force = -force_mag * (r2 - r1) / r12

10 return force

11

12 def MD(r1 , r2 , v1 , v2 , N_steps):

13 velocities = np.zeros ([N_steps , 6])

14 F12 = harmonic_force(r1 , r2 , k, r_eq)

15

16 for step in range(N_steps):

17 # Verlet update

18 r1 += v1 * dt + 0.5 * F12 / mass * dt ** 2

19 r2 += v2 * dt - 0.5 * F12 / mass * dt ** 2

20

21 F12_new = harmonic_force(r1 , r2 , k, r_eq)

22

23 v1 += 0.5 * (F12 + F12_new) * dt / mass

24 v2 -= 0.5 * (F12 + F12_new) * dt / mass

25

26 F12 = F12_new

27 velocities[step][:3] = v1

28 velocities[step][3:6] = v2

29 return velocities

30

31 # Parameters for the simulation

32 dt = 1e-15 # in s

33 mass = 2.55e-26 # in kg

34 r = 1.16e-10 # in m

35 k = 1180 # in N/m

36 data = [("O$_2$ (vibration)", 2000, False),

37 ("O$_2$ (vibration + rotation)", 5000, True)]

38

39

40 for i, (name , N_steps , rotate) in enumerate(data):

41

42 # Initial positions

43 r1 = np.array ([0.0, 0.0, 0.0])

44 r2 = np.array ([0.0, 0.0, r*1.2])

45

46 # Initialize velocities

47 v1 = np.zeros (3)

48 v2 = np.zeros (3)

49 if rotate:

50 v1[0] += 50

51 v2[0] -= 50

52

53 # MD simulation

54 Vs = MD(r1 , r2 , v1 , v2 , N_steps)

55

56 fig , axs = plt.subplots(2, len(data), figsize =(12, 6))

57

58 # Plot VACF

59 VACF = np.array([np.dot(Vs[0], Vs[t]) for t in range(N_steps)])

60 axs[0, i].plot(np.arange(N_steps) * dt * 1e12 , VACF)

61 axs[0, i]. set_title(name)

62 axs[0, i]. set_xlabel("Time (ps)")

63 axs[0, i]. set_ylabel("VACF")

64

65 # Plot VDOS

CHAPTER 5. MD STRUCTURAL CHARACTERIZATION 65

66 VDOS = np.abs(fft(VACF))**2

67 freqs = np.fft.fftfreq(N_steps , dt) / 1e12

68 axs[1, i].plot(freqs[: N_steps //2], VDOS[: N_steps //2])

69 axs[1, i]. set_xlabel("Frequency (THz)")

70 axs[1, i]. set_ylabel("log -VDOS")

71 axs[1, i]. set_xlim ([0, 60])

72 axs[1, i]. set_yscale("log")

73 plt.show()

0.0 0.1 0.2 0.3 0.4 0.5
Time (ps)

5

0

5

VA
CF

1e6 O2 (vibration)

0 2 4 6 8 10
Time (ps)

5

0

5

VA
CF

1e6 O2 (vibration + rotation)

0 10 20 30 40 50 60
Frequency (THz)

107

108

109

lo
g-

VD
OS

0 10 20 30 40 50 60
Frequency (THz)

107

109

lo
g-

VD
OS

Figure 5.3: The simulated VACF and VDOS for the harmonic oscillators.

Fig. 5.3 shows the simulated VACF and VDOS for the harmonic oscillators. For ideal
harmonic oscillators, the VACF exhibits periodic and consistent behavior over time, as
expected. Using Fourier analysis, we can conveniently extract the vibrational frequencies
for both single and multiple harmonic oscillators.

For pure O2, the vibrational frequency is centered around 47 THz, which aligns well
with predictions from classical mechanics:

1

2π

√
k

m
=

1

2× 3.14159

√
1180

2× 2.66× 10−26
× 10−12 = 47.40 THz

For the case of hybrid oscillators, the VDOS additionally shows a smaller frequency
peak near 0.1 THz, corresponding to the rotational motion of the molecule, as computed
below.

66 Atomistic Simulation in Materials Modeling

The angular frequency for a diatomic rotor.

To compute the angular frequency for a diatomic rotor, such as an O2 molecule,
one can use the rigid rotor model from classical mechanics. The angular frequency
ω is related to the molecule’s moment of inertia I and the rotational energy level
E.

1. The moment of inertia of a diatomic molecule about its center of mass is
given by:

I =
m1m2

m1 +m2

r2 = (2.66×10−26kg/2)×(1.16×10−10m)2 = 1.78×10−46 kg·m2.

2. The rotational energy levels in quantum mechanics are given by:

EJ =
ℏ2J(J + 1)

2I
,

Between J = 1 and J = 0, the energy difference is:

∆E =
ℏ2(2)

2I
=

(1.054× 10−34)2 × 2

2× (1.78× 10−46)
= 6.25× 10−23 J.

3. Angular frequency is related to energy difference by:

ω =
∆E

ℏ
=

6.25× 10−23

×1.054× 10−34
= 5.93× 1011 rad/s = 0.09 THz.

5.3.3 Many oscillators

In a system of N atoms, each atom has 3 degrees of freedom (one for each Cartesian
coordinate: x, y, and z). Therefore, the total number of degrees of freedom is 3N . To
understand the pattern of the collective vibrations, we can decompose it into a sum of
normal modes, each vibrating at a distinct frequency. Each normal mode corresponds
to one of these degrees of freedom in terms of collective motion, and each mode in a
system is orthogonal to the others.

Fundamental Mode

A−8 A−7 A−6 A−5 A−4

High Frequency Mode

A0 A1 A2 A3 A4

Figure 5.4: Diagram illustrating normal modes in a one-dimensional atomic chain. The
left panel represents the fundamental mode, where all atoms move in the same direction

with a long wavelength. The right panel represents a higher frequency mode, where
adjacent atoms oscillate in opposite directions with a shorter wavelength.

In experiments, you can measure vibrations using IR, Raman, or Neutron scattering.
In an MD simulation, we extract vibrational frequencies from each normal mode by
analyzing the VACF. The VACF, denoted C(τ), measures how the velocity of a particle

CHAPTER 5. MD STRUCTURAL CHARACTERIZATION 67

at a given time t correlates with its velocity at some later time t + τ . It is useful for
understanding particle dynamics and is related to the vibrational properties and transport
coefficients (like diffusion).

C(τ) =
1

N

N∑
i=1

⟨vi(0) · vi(τ)⟩ (5.4)

On the other hand, VDOS provides information about the frequencies at which par-
ticles in a system vibrate. The VDOS is computed by taking the Fourier transform of
the VACF. In practice, because simulations are finite and VACF data is computed over
a limited time interval, we typically use the discrete Fourier transform (DFT) or fast
Fourier transform (FFT) to compute the VDOS numerically:

D(ω) =
1

2π

∫ ∞

0

C(τ) cos(ωτ)dτ (5.5)

5.4. LAMMPS Simulation of RDF and VDOS

For realistic systems, LAMMPS can directly compute both RDF and VACF. This enables
users to obtain these properties from LAMMPS output and plot them for further analysis.
Below we show a script to set up the lammps for both calculations based on the example
of liquid argon.

5.4.1 LAMMPS Setup

LAMMPS setup in Colab.

!sudo apt-get update
!sudo apt-get install -y lammps

1 lammps_script = """

2 # Initial setup of the simulation

3 units metal # Use Metal units

4 dimension 3 # 3D simulation

5 boundary p p p # PBC conditions

6 atom_style atomic # Atomic style

7

8 # Declaring necessary parameters

9 variable T equal 94.4 # Temperature K

10 variable epsilon equal 120*8.61733e-5 # eV

11 variable sigma equal 3.4 # Angstrom

12 variable L equal 10.229*${sigma} # Box length

13 variable a equal $L/6 # Lattice parameter

14

15 # Generating supercell

16 lattice fcc $a
17 region box block 0 1 0 1 0 1 units lattice

18 create_box 1 box

19 create_atoms 1 box

20 replicate 6 6 6

21

22 # Setting up Simulation

68 Atomistic Simulation in Materials Modeling

23 mass 1 39.95

24 pair_style lj/cut 12.0

25 pair_coeff 1 1 ${epsilon} ${sigma}
26 timestep 1.0

27 neighbor 0.3 bin

28 thermo 1000

29 thermo_style custom step temp epair etotal ke pe press vol

30 velocity all create $T 12345

31 fix 1 all npt temp $T $T 100 iso 1.0 1.0 1.0

32

33 # RDF calculation

34 compute myRDF all rdf 100

35 fix 2 all ave/time 100 1 100 c_myRDF [*] file rdf.txt mode vector

36 run 10000

37 unfix 2

38

39 # VACF calculation

40 reset_timestep 0

41 compute myVACF all vacf

42 fix 3 all ave/correlate 10 2000 20000 c_myVACF [4] file vacf.txt

ave running

43 run 20000

44 """

45

46 # Save the script to a file

47 with open("lmp_nvt_rdf_vacf.in", "w") as file:

48 file.write(lammps_script)

49

50 !lmp -in lmp_npt_rdf_vacf.in

In this script, we set up a MD simulation in LAMMPS to compute the RDF and VACF
for a model system of liquid argon. The system model, LJ potential and ensemble choice
have been discussed in the previous chapters. Hence we will focus on the illustration of
RDF and VACF commands in LAMMPS.

compute RDF all rdf 100

fix 2 all ave/time 100 1 100 c_RDF[*] file rdf.txt mode vector

run 10000

The above commands bin RDF into 100 intervals. Results are averaged over 100 steps
using fix ave/time and written to the file rdf.txt. Running 10000 steps will generate 100
RDF files in rdf.txt.

compute VACF all vacf

fix 3 all ave/correlate 10 2000 20000 c_VACF[4] file vacf.txt ave running

run 20000

The above commands calculates VACF for all atoms. Results are saved to vacf.txt.
The 2nd line averages the computed VACF over 10 timesteps, with a total of 2000 cor-
relation steps, and then saves the averaged VACF data to the file vacf.txt. And the ave
running option ensures that the averaging is cumulative across the simulation.

5.4.2 Plotting RDF, VACF and VDOS

Once the simulation completes, the rdf.txt file is organized as follows:

CHAPTER 5. MD STRUCTURAL CHARACTERIZATION 69

Time-averaged data for fix 2

TimeStep Number-of-rows

Row c_myRDF[1] c_myRDF[2] c_myRDF[3]

0 100

1 0.085 0 0

2 0.255 0 0

...

100 16.915 1.05312 458.937

200 100

1 0.085 0 0

2 0.255 0 0

...

...

10000 100

1 0.085 0 0

2 0.255 0 0

99 16.745 1.197 471.653

100 16.915 1.22404 489.382

The first three lines starting with # provides some comments. The main body contains
blocks of data for different time steps. Each block starts with the time step number and
contains four columns: Bin index, Radial distance r, RDF value g(r), and accumulated
RDF values.

The vacf.txt file is arranged as follows:

Time-correlated data for fix 3

Timestep Number-of-time-windows

Index TimeDelta Ncount c_myVACF[4]*c_myVACF[4]

0 2000

1 0 1 32.5261

2 10 0 0.0

3 20 0 0.0

4 30 0 0.0

...

20000 2000

1 0 2001 0.26325

2 10 2000 0.254712

3 20 1999 0.245126

...

1998 19970 0 0.0

1999 19980 0 0.0

2000 19990 0 0.0

20000 2000

1998 19970 4 0.191614

1999 19980 3 0.189268

2000 19990 2 0.185342

The first three lines starting with # provides some comments. Each block starts with
the time step number and contains four columns: time step, dt, number of count and
VACF values.

70 Atomistic Simulation in Materials Modeling

The following Python code demonstrates how to process and visualize the outputs
from rdf.txt and vacf.txt:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.fftpack import fft

4 import seaborn as sns

5 sns.set(font_scale =1.5)

6

7 def read_rdf(filename):

8 with open(filename , "r") as file:

9 lines = file.readlines ()

10

11 r_values = np.zeros (100)

12 rdf = np.zeros ([100 , 100]) #first 100 RDF values

13 count = -1

14 for line in lines:

15 if line.startswith("#") or line.strip() == "":

16 continue # Skip comments and empty lines

17

18 parts = line.split ()

19

20 # Detect start of new time step block

21 if len(parts) == 2: # 0 100

22 count += 1

23 if count >= 100:

24 break

25 else:

26 id = int(parts [0]) - 1

27 r = float(parts [1]) # Extract distance

28 rdf_value = float(parts [2]) # Extract RDF value

29 rdf[id , count] = rdf_value

30 if count == 0:

31 r_values[id] = r

32 #print(rdf[id])

33

34 return r_values , rdf

35

36 fig , axs = plt.subplots(3, 1, figsize =(12, 10))

37 r_values , rdf = read_rdf("rdf.txt")

38

39 axs [0]. plot(r_values , rdf[:, 0], "-.", lw=0.5, label="0 ps")

40 axs [0]. plot(r_values , rdf[:, 10], "--", lw=1.0, label="1 ps")

41 axs [0]. plot(r_values , rdf[:, -1], "-", label="10 ps")

42 axs [0]. set_xlabel("$r ~(\ mathrm {\AA})$")
43 axs [0]. set_ylabel("RDF")

44 axs [0]. set_xlim ([0, 12])

45 axs [0]. legend ()

46

47 vacf = np.loadtxt("vacf.txt", skiprows =2005)

48 axs [1]. plot(vacf[:, 1]/1000 , vacf[:, 3])

49 axs [1]. set_xlabel("Time (ps)")

50 axs [1]. set_ylabel("VACF")

51 #axs [1]. set_xlim ([0, 20])

52

53 N_steps = len(vacf)

54 dt = 10 * 1e-15 # fs => s

55 freq = np.fft.fftfreq(N_steps , dt) / 1e12 # Hz => THz

CHAPTER 5. MD STRUCTURAL CHARACTERIZATION 71

56 VDOS = np.abs(fft(vacf[:, 3]))**2

57

58 axs [2]. plot(freq[: N_steps //2], VDOS[: N_steps //2])

59 axs [2]. set_xlabel("Frequency (THz)")

60 axs [2]. set_ylabel("VDOS")

61 axs [2]. set_xlim ([0, 2])

62 plt.tight_layout ()

63 plt.savefig("lec_05_lammps.pdf")

0 2 4 6 8 10 12
r (Å)

0

10

20

RD
F

0 ps
1 ps
10 ps

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (ps)

0.4

0.2

0.0

0.2

VA
CF

0 1 2 3 4 5
Frequency (THz)

0

200

400

600

VD
OS

Figure 5.5: The simulated RDF, VACF and VDOS for liquid Argon at 94.4 K.

The plots are shown in Fig. 5.5. These results highlight several key features:

• RDF: Peaks in the RDF correspond to preferred atomic separations. At the be-
ginning of the simulation, the RDF displays sharp peaks, characteristic of a solid
with long-range crystalline order. However, after approximately 1 ps, these peaks
broaden significantly, indicating the formation of a liquid phase. The RDFs at 1 ps
and 10 ps are nearly identical, confirming the stabilization of the liquid phase.

• VACF: VACF captures temporal correlations in atomic velocities. Oscillatory be-
havior in VACF indicates vibrational motion in the system.

• VDOS: Peaks in the VDOS correspond to specific vibrational modes within the
system. Low-frequency modes often represent collective atomic motions, while high-
frequency modes correspond to localized vibrations. Analyzing the VDOS provides
a direct link to the vibrational dynamics observed in the MD trajectory.

72 Atomistic Simulation in Materials Modeling

By following the steps outlined above, users can compute RDF and VDOS for any
system simulated in LAMMPS, enabling in-depth analysis of structural and dynamic
properties. These methods form the foundation for investigating phase transitions, ma-
terial stability, and vibrational characteristics in complex systems.

5.5. Summary

In this chapter, we discussed methods to analyze the structural behavior from a MD
simulation both qualitatively and quantitatively.

First, visualization plays a crucial role in gaining an intuitive understanding of atomic
arrangements and dynamic transitions in a system. Using tools like OVITO and customiz-
ing visualization settings, researchers can highlight key structural features such as defects,
interfaces, and vibrational modes.

Next, we explored the use of quantitative metrics to characterize structural and dy-
namic properties more rigorously. The RDF provides insights into the spatial distribution
of neighboring atoms, helping to distinguish between liquid, solid, and amorphous phases.
The VDOS reveals the distribution of vibrational frequencies in the system, offering a
link between atomic motions and experimental spectroscopic data.

Together, these methods form a robust framework for analyzing MD simulations,
enabling researchers to extract meaningful information about the structural and dynamic
behaviors of materials. In the following chapters, we will expand upon these techniques
to address more complex systems and phenomena.

6. Transport Processes

Transport properties describe how particles, energy, and momentum move within a sys-
tem. These properties are critical for understanding materials and systems across various
scales, from atomic to macroscopic. In this chapter, we will focus on two key transport
properties: diffusion (particle transport) and thermal conductivity (heat transport).

One might intuitively consider simulating such processes directly by observing the
system over time to measure particle displacements or energy transfer. However, MD
simulations, especially those based on classical potentials, are inherently limited by com-
putational constraints. Even on supercomputers, MD simulations typically span nano-
to micro-second timescales. For many real-world transport processes, such durations
are insufficient to capture the full dynamics, especially in systems with slow relaxation
processes. Therefore, a direct simulation approach may not yield reliable or converged
transport properties.

To overcome these limitations, we will take the advantage of an important subject in
statistical mechanics, the linear response theory, to design indirect but efficient methods
for calculating transport coefficients. This approach provides a robust framework to
analyze particle and energy transport in equilibrium systems, significantly reducing the
computational cost while maintaining accuracy.

6.1. Diffusion

Let us start with the diffusion problem. According to Fick’s 2nd law, the diffusion
equation is a partial differential equation that describes how a substance spreads over
time. For a one-dimensional system under equilibrium, it is given by:

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
(6.1)

where:

• C(x, t) is the concentration of particles at position x and time t.

• D is the diffusion constant which characterizes how fast particles diffuse.

The equation states that the rate of change of concentration over time, ∂C/∂t, is
proportional to the second spatial derivative of the concentration, ∂2C/∂x2.

The solution to the diffusion equation gives the probability distribution for the par-
ticle’s position over time. In the case of one-dimensional diffusion starting from a point,
the solution is a Gaussian distribution:

C(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
(6.2)

73

74 Atomistic Simulation in Materials Modeling

The Gaussian distribution suggests that:

1. The peak is at the origin (x = 0), assuming particles start there.

2. The spread increases with time, meaning that particles are more likely to be found
farther from the origin over time.

To find the mean squared displacement (MSD), we calculate the expected value of x2

with respect to this distribution. The MSD in one dimension is:

⟨x2(t)⟩ =

∫ ∞

−∞
x2C(x, t) dx = 2Dt

If we change x from 1-dimension to d-dimension, the general form is

⟨||∆x||2(t)⟩ = 2dDt

In derivative form:

∂⟨||∆x||2(t)⟩
∂t

= 2dD (6.3)

In MD simulations, we compute the MSD as the time-averaged square of particle
displacements from initial positions. Linear regression of the MSD(t) curve gives the
diffusion constant.

1 def compute_msd(R):

2 """

3 Compute the mean square displacement (MSD) over time.

4 R: array of shape (num_timesteps , num_atoms , 3)

5 """

6 num_timesteps = positions.shape [0]

7 num_atoms = positions.shape [1]

8

9 msd = np.zeros(num_timesteps)

10 for t in range(1, num_timesteps):

11 displacements = R[t] - R[0]

12 squared_displacements = np.sum(displacements **2, axis =1)

13 msd[t] = np.mean(squared_displacements)

14

15 return msd

16

17 # Example usage

18 positions = np.random.randn (1000 , 100, 3)

19 msd = compute_msd(positions)

20 time = np.linspace(0, 100, len(msd))

21

22 # Fit MSD to time to calculate diffusion constant

23 D = np.polyfit(time , msd , 1)[0] / 6

24 plt.plot(time , msd , label="MSD")

25 plt.xlabel("Time (ps)")

26 plt.ylabel("MSD (\AA^2)")

27 plt.title(f"Diffusion Constant: {D:.3e} cm2/s")
28 plt.show()

CHAPTER 6. TRANSPORT PROCESSES 75

6.2. The Green-Kubo Relation

6.2.1 Alternative Expression of MSD

The MSD can also be expressed through the velocity of the particle:

∆x(t) =

∫ t

0

dt′vx(t′)

Thus, the MSD becomes:

⟨∆x2(t)⟩ =

〈(∫ t

0

dt′vx(t′)

)2
〉

=

∫ t

0

dt′
∫ t

0

dt′′⟨vx(t′)vx(t′′)⟩

= 2

∫ t

0

dt′
∫ t′

0

dt′′⟨vx(t′)vx(t′′)⟩

This formulation allows D to be computed using the VACF:

D =
∂⟨∆r2(t)⟩

2d∂t
=

1

d

∫ ∞

0

⟨v(0) · v(t)⟩dt (6.4)

6.2.2 The General Green-Kubo Relation

In fact, such a relation, between diffusion and the velocity can be understood via a
physical picture. If the atoms are able to the diffuse quickly, they should quickly forget
about the initial velocity. On the other hand, it is the flux of velocity that triggers the
diffusion. Such a dual relation may be found in many other physical processes.

The Green-Kubo relation generalizes this idea. According to linear response theory,
transport coefficients λ are related to time correlations of microscopic quantities under
thermal equilibrium:

λ =

∫ ∞

0

⟨J(0) · J(t)⟩dt (6.5)

where J(t) is the current of the relevant quantity (e.g., velocity, heat current, or
stress).

One can think of the following scenarios to apply the Green-Kubo Relation.

76 Atomistic Simulation in Materials Modeling

• Diffusion constant vs. velocity: The flux of velocity causes diffusion. If
a particle quickly forgets its initial velocity, it leads to faster diffusion as the
particle loses memory of its initial velocity.

• Thermal conductivity vs. heat current: Applying a temperature gradi-
ent causes a heat current to flow, leading to thermal conductivity. The faster
the decay of heat current autocorrelation, the greater the thermal conductiv-
ity.

• Viscosity vs. stress tensors: In a fluid, applying a shear stress leads to a
flow, related to viscosity. A high viscosity fluid (like honey) will have a slower
decay of the stress autocorrelation function, meaning the fluid remembers
shear stresses for a longer time compared to a low viscosity fluid (like water).
These relations are derived from linear response theory, which states that the
response of a system to a small perturbation is proportional to the equilibrium
fluctuations of microscopic quantities (e.g., heat current, velocity, or stress).

For a detailed mathematical proof, we refer to Frenkel and Smidt [10]. In the next
section, we will focus on the application of this relation to the calculation of thermal
conductivity.

6.2.3 Thermal Conductivity

Thermal conductivity, κ, measures a material’s ability to conduct heat. Using the Green-
Kubo relation, κ is calculated from the heat current autocorrelation function (HCACF):

κ =
1

kBT 2V

∫ ∞

0

⟨J(0) · J(t)⟩dt (6.6)

where:

• J(t) is the heat current.

• kB is the Boltzmann constant.

• T is temperature.

• V is the system volume.

The heat current J is derived from the 1st law of thermodynamics and accounts for
both energy and momentum flow within the system. It can be expressed as:

J =
1

V

[∑
i

eivi −
∑
i

Sivi

]

=
1

V

[∑
i

eivi +
∑
i<j

(Fij · vj)rij

]

=
1

V

[∑
i

eivi +
1

2

∑
i<j

(Fij · (vi + vj)) rij

]
where:

CHAPTER 6. TRANSPORT PROCESSES 77

• ei is the per-atom energy (potential and kinetic).

• Si is the per-atom stress tensor.

• vi is the velocity of atom i.

This formulation includes:

• The transport of energy by individual atoms (eivi term).

• The energy flux caused by interactions between atoms (Fij · v terms).

The HCACF is then evaluated as:

⟨J(t) · J(0)⟩eq =
1

N

N∑
i=1

⟨Ji(t) · Ji(0)⟩ (6.7)

6.2.4 Transport Properties from Equilibrium MD

At this point, it’s important to note that the techniques to compute diffusion coefficients
and thermal conductivity are indirect. They rely on the statistical properties of the system
and are rooted in the linear response theory. This principle connects the equilibrium
fluctuations in a system to its response to perturbations, stating that a system’s response
to a small perturbation is proportional to its equilibrium fluctuations.

These techniques are useful in MD as they allow us to derive important transport
properties from fluctuations within the system, bypassing the need for external pertur-
bations.

With the increasing computational power, it is possible to employ nonequilibrium
MD (NEMD) simulations calculate transport properties directly by applying external
perturbations, such as temperature or concentration gradients. However, the practical
limitations of NEMD include the need for extended simulation times to reach a steady
state and the introduction of boundary effects, which can complicate the analysis.

6.3. LAMMPS Calculation and Analysis

In this section, we demonstrate how to compute the MSD and thermal conductivity of
liquid argon using LAMMPS. The provided script sets up the necessary calculations and
outputs results for further analysis. Below is the detailed breakdown of the script and its
commands.

6.3.1 LAMMPS Setup

After invoking the LAMMPS environment in Colab, one can first run the following block.

1 lammps_script = """

2 # Initial setup of the simulation

3 units metal # Use Metal units

4 dimension 3 # 3D simulation

5 boundary p p p # PBC conditions

6 atom_style atomic # Atomic style

7

78 Atomistic Simulation in Materials Modeling

8 # Declaring necessary parameters

9 variable T equal 94.4 # Temperature K

10 variable epsilon equal 120*8.61733e-5 # eV

11 variable sigma equal 3.4 # Angstrom

12 variable L equal 10.229*${sigma} # Box length

13 variable a equal $L/6 # Lattice parameter

14 variable a equal $L**3 # Lattice parameter

15

16 # Generating supercell

17 lattice fcc $a
18 region box block 0 1 0 1 0 1 units lattice

19 create_box 1 box

20 create_atoms 1 box

21 replicate 6 6 6

22

23 # Setting up Simulation

24 mass 1 39.95

25 pair_style lj/cut 13.0

26 pair_coeff 1 1 ${epsilon} ${sigma}
27 timestep 1.0

28 neighbor 0.3 bin

29 thermo 1000

30 thermo_style custom step temp epair etotal ke pe press vol

31 velocity all create $T 12345

32 fix 1 all nvt temp $T $T 10 drag 0.2

33

34 # MSD calculation

35 compute MSD all msd com yes

36 fix 2 all ave/time 100 1 100 c_MSD [*] file msd.txt mode vector

37 run 10000

38 unfix 2

39

40 # kappa calculation

41 reset_timestep 0

42 thermo 2000

43 variable kB equal 1.3806504e-23 # [J/K] Boltzmann

44 variable kCal2J equal 4186.0/6.02214 e23

45 variable A2m equal 1.0e-10

46 variable fs2s equal 1.0e-15

47 variable convert equal ${kCal2J }*${kCal2J }/${fs2s}/${A2m}
48 compute myKE all ke/atom

49 compute myPE all pe/atom

50 compute myStress all stress/atom NULL virial

51 compute flux all heat/flux myKE myPE myStress

52 variable Jx equal c_flux [1]/ vol

53 variable Jy equal c_flux [2]/ vol

54 variable Jz equal c_flux [3]/ vol

55 fix JJ all ave/correlate 10 200 2000 &

56 c_flux [1] c_flux [2] c_flux [3] type auto file J0Jt.dat ave

running

57 variable scale equal ${convert }/${kB}/$T/$T/$V*${dt}*10
58 variable k11 equal trap(f_JJ [3])*${scale}
59 variable k22 equal trap(f_JJ [4])*${scale}
60 variable k33 equal trap(f_JJ [5])*${scale}
61 thermo_style custom step temp v_Jx v_Jy v_Jz v_k11 v_k22 v_k33

62 run 100000

63 variable k equal (v_k11+v_k22+v_k33)/3.0

64 variable ndens equal count(all)/vol

CHAPTER 6. TRANSPORT PROCESSES 79

65 print "average conductivity: $k[W/mK] @ $T K, ${ndens} /A\^3"

66 """

67

68 # Save the script to a file

69 with open("lmp_npt_msd_kappa.in", "w") as file:

70 file.write(lammps_script)

71

72 !lmp -in lmp_npt_msd_kappa.in

In this script, we called two commands to compute MSD and thermal conductivity
as follows.

compute MSD all msd com yes

fix 2 all ave/time 100 1 100 c_MSD[*] file msd.txt mode vector

run 10000

• compute MSD all msd com yes: Computes the mean square displacement
(MSD) for all atoms relative to the center of mass.

• fix 2 all ave/time 100 1 100 c MSD[*] file msd.txt mode vector: Averages
the MSD over 100 timesteps and saves the results in msd.txt.

• run 10000: Executes the simulation for 10,000 timesteps, generating 100 blocks of
MSD data.

variable kB equal 1.3806504e-23 # [J/K] Boltzmann

variable kCal2J equal 4186.0/6.02214e23

variable A2m equal 1.0e-10

variable fs2s equal 1.0e-15

variable convert equal ${kCal2J}*${kCal2J}/${fs2s}/${A2m}

compute myKE all ke/atom

compute myPE all pe/atom

compute myStress all stress/atom NULL virial

compute flux all heat/flux myKE myPE myStress

variable Jx equal c_flux[1]/vol

variable Jy equal c_flux[2]/vol

variable Jz equal c_flux[3]/vol

fix JJ all ave/correlate 10 200 2000 &

c_flux[1] c_flux[2] c_flux[3] type &

auto file J0Jt.dat ave running

variable scale equal ${convert}/${kB}/$T/$T/$V*$s*${dt}

variable k11 equal trap(f_JJ[3])*${scale}

variable k22 equal trap(f_JJ[4])*${scale}

variable k33 equal trap(f_JJ[5])*${scale}

thermo_style custom step temp v_Jx v_Jy v_Jz v_k11 v_k22 v_k33

run 100000

variable k equal (v_k11+v_k22+v_k33)/3.0

variable ndens equal count(all)/vol

print "average conductivity: $k[W/mK] @ $T K, ${ndens} /A\^3"

80 Atomistic Simulation in Materials Modeling

The above block demonstrates how to calculate the thermal conductivity of a material
using the Green-Kubo relation. It uses compute flux all heat/flux myKE myPE
myStress to compute the total heat flux using the kinetic, potential, and stress contri-
butions. The variables Jx, Jy, and Jz represent the heat flux components in the x, y and
z directions, normalized by the system volume. Finally, it computes the κ according to
eq. 6.6.

6.3.2 Results Analysis

The thermal conductivity is directly extracted from the LAMMPS log file at the end of
the simulation, as shown below:

average conductivity:

0.145404507450377 [W/mK] @ 94.4 K,

0.0205389130107768 /A^3

While the output provides the averaged thermal conductivity value, it is possible to
extract the directional dependence of thermal conductivity by modifying the LAMMPS
input script. Directional thermal conductivity analysis is especially critical for solid
materials, as they often exhibit anisotropic thermal transport properties due to their
crystal structure or defects.

To compute the directional components (e.g., κxx, κyy, κzz), the script should calculate
and store the contributions of the heat flux components (Jx, Jy, Jz) to the thermal
conductivity. These can be achieved by appropriately modifying the computation and
fix commands for the heat flux autocorrelation function. This enhancement can provide
deeper insights into the anisotropic thermal behavior of solid systems.

For the MSD and diffusion coefficients, the msd.txt file outputs time-averaged data.
Every 100 steps (corresponding to 0.1 ps), the MSD values are computed for each atom
in the x, y, and z components as well as the total summed displacements. A typical
snippet of the msd.txt file is as follows:

Time-averaged data for fix 2

TimeStep Number-of-rows

Row c_MSD

0 4

1 0

2 0

3 0

4 0

100 4

1 0.0187545

2 0.0190381

3 0.0190832

4 0.0568759

Therefore, we use the following code to extract the total msd value for every 0.1 ps,
and then perform linear regression to obtain the coefficients according to eq.6.3.

CHAPTER 6. TRANSPORT PROCESSES 81

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import seaborn as sns

4 sns.set(font_scale =1.5)

5

6 msd = np.loadtxt("msd.txt", skiprows =3)[4::5 , 1]

7 time = np.arange(len(msd))*0.1

8

9 # Compute diffusion coefficient

10 coeffs = np.polyfit(time [:10], msd [:10], 1) # Linear fit (degree =1)

11 slope = coeffs [0]

12 intercept = coeffs [1]

13 D = slope / 6 # Diffusion coefficient

14

15 # Plot the results

16 plt.figure(figsize =(8, 4))

17 plt.plot(time , msd , label="Raw MSD")

18 plt.plot(time [:10], slope * time [:10] + intercept ,

19 "r--", label=f"Linear Fit D={D:.3e} cm2/s")
20 plt.xlabel("Time (ps)")

21 plt.ylabel("MSD ($\mathrm {\AA^2}$)")
22 plt.legend ()

23 plt.tight_layout ()

24 plt.savefig("lec06 -msd.pdf")

The results are shown in Fig. 6.1. A clear linear increasing trend for the MSD values
is observed up to 1 ps. Beyond this point, the MSD values begin to fluctuate. This
behavior can be attributed to argon at 94.4 K retaining strong solid-like characteristics,
where atoms primarily vibrate around their equilibrium positions, resulting in an MSD
that oscillates or saturates rather than increasing indefinitely. Consequently, only the
first 1 ps of data is used for linear fitting to extract the diffusion coefficient.

0 2 4 6 8 10
Time (ps)

0.0

0.2

0.4

0.6

0.8

1.0

M
SD

 (Å
2)

Raw MSD
Linear Fit D=1.579e-01 cm²/s

Figure 6.1: The simulated MSD and diffusion coefficient for liquid argon at 94.4 K.

Fig. 6.2 further displays the simulated MSD values at different temperatures. As
expected, higher temperatures significantly enhance diffusion, demonstrating the tem-
perature dependence of the diffusion process.

82 Atomistic Simulation in Materials Modeling

0 2 4 6 8 10
Time (ps)

0

10

20

30

40

M
SD

 (Å
2)

90K
100K
110K
120K

Figure 6.2: The simulated MSD for liquid argon at different temperatures.

6.4. Summary

In this chapter, we explored the computation of transport properties such as diffusion
coefficients and thermal conductivity through MD simulations. By leveraging the princi-
ples of statistical mechanics, particularly the linear response theory, we demonstrated how
equilibrium fluctuations can be utilized to derive transport properties without relying on
external perturbations. These relations establish a universal framework for connecting
equilibrium fluctuations to macroscopic transport properties, allowing for efficient and
accurate computations.

Finally, while the techniques discussed are grounded in equilibrium MD simulations,
they can be extended and compared with results from non-equilibrium MD simulations
for validation and further insights. This chapter serves as a foundation for understanding
and applying transport property computations in diverse systems.

7. Enhanced Sampling with Metady-
namics

In a standard MD simulation, the system evolves under Newtonian dynamics, meaning
that it can get stuck in local minima for long periods. This limits the exploration of the
free energy surface, making it difficult to observe transitions between different states. To
address this challenge, one may consider the use of enhanced sampling techniques. In
this lecture, we will focus on a particular type of technique called Metadynamics.

7.1. What is Metadynamics?

Metadynamics is an MD-based sampling technique to explore free energy landscapes and
overcome energy barriers. It is particularly useful for systems where traditional MD
struggles to sample rare events due to high energy barriers or complex transitions. Meta-
dynamics not only accelerates the sampling of rare events but also provides a mechanism
for reconstructing the free energy surface. This is achieved by systematically filling the
energy wells with biasing potentials, eventually allowing the system to overcome energy
barriers and explore alternative configurations.

Compared to traditional MD simulation, Metadynamics adds the following concepts:

1. Biasing Potential: The fundamental idea is to add a bias potential to the system
that changes over time. By adding Gaussian-shaped potentials periodically to the
explored regions, the system is pushed out of energy wells, allowing for better
exploration. The accumulation of these Gaussians eventually results in a bias that
compensates for the underlying free energy, enabling the system to explore new
configurations freely.

2. Collective Variables (CVs): Metadynamics works by adding the bias in the
space of carefully chosen collective variables (CVs). CVs are reduced-dimensional
representations of the system, such as distances between atoms, angles, or other
descriptors capturing essential behavior. The choice of CVs is crucial, as it directly
influences the efficiency and success of the metadynamics simulation. Properly
chosen CVs can significantly accelerate the exploration of relevant conformational
space, while poorly chosen CVs may lead to incomplete sampling.

3. Free Energy Estimation: As the bias potential accumulates, it fills the wells
of the free energy landscape. The accumulated bias potential can be used to re-
construct the underlying free energy surface, providing valuable insights into the
thermodynamic properties of the system. This reconstruction allows researchers to

83

84 Atomistic Simulation in Materials Modeling

identify stable states, transition states, and the pathways connecting them, which
is critical for understanding the behavior of molecular systems.

7.2. MD and Metadynamics in an 1D Potential Well

To demonstrate the concept of Metadynamics, let’s consider a simple model system with
a particle moving in a double-well potential as follows:

V (x) = x4 − 3x2

1 import numpy as np

2 import seaborn as sns

3 import matplotlib.pyplot as plt

4 sns.set(font_scale =1.2)

5

6 # Define the double well potential

7 def double_well_potential(x):

8 return x**4 - 3*x**2

9

10 # Derivative of the potential (force)

11 def potential_force(x):

12 return -4*x**3 + 6*x

13

14 # Time evolution of the particle using Langevin dynamics

15 def md(steps =20000 , dt=1e-2, gamma =0.02 , temp =0.01):

16 x = 0.5 # initial position

17 x_positions = [x]

18

19 for step in range(steps):

20 # Langevin dynamics with force from the double well potential

21 force = potential_force(x)

22 thermal_force = np.sqrt(2 * gamma * temp / dt) * np.random.

normal ()

23

24 # Update position with Langevin equation

25 x += force * dt - gamma * x * dt + thermal_force * np.sqrt(dt)

26 x_positions.append(x)

27

28 return np.array(x_positions)

29

30 # Run the simulation

31 xs = md()

32

33 # Create the figure with two subplots with shared x-axis

34 fig , (ax1 , ax2) = plt.subplots(2, 1, figsize =(8, 6), gridspec_kw ={"

height_ratios": [2, 1]}, sharex=True)

35

36 # Double well potential with Langevin dynamics

37 x_vals = np.linspace(-2, 2, 100)

38 potential_vals = double_well_potential(x_vals)

39 ax1.plot(x_vals , potential_vals , "--", lw=1.0, label="Double Well

Potential", color="k")

40 sc = ax1.scatter(xs , double_well_potential(xs), c=range(len(xs)), s=2,

cmap="viridis", alpha =0.5)

41 ax1.set_ylabel("Potential Energy")

42 ax1.legend ()

CHAPTER 7. ENHANCED SAMPLING WITH METADYNAMICS 85

43 ax1.set_title("Double Well Potential with Langevin Dynamics",

fontweight="bold")

44 ax1.grid(True)

45 cbar = plt.colorbar(sc , ax=ax1 , orientation="horizontal", pad =0.1)

46 cbar.set_label("Time Step")

47

48 # Histogram of x values

49 ax2.hist(xs , bins=50, color="skyblue", edgecolor="black")

50 ax2.set_xlabel("Position (x)")

51 ax2.set_ylabel("Frequency")

52 ax2.set_title("Histogram of Particle Positions")

53 ax2.grid(True)

54

55 plt.tight_layout ()

56 plt.savefig("1D-MD.png")

The particle would just oscillate around the energy well in this simulation, as illus-
trated below:

Figure 7.1: MD simulation in a double well potential.

If one is interested in sampling more of the phase space, there must be a way to
escape from the local minima. Metadynamics adds a bias to the system to prevent the
particle from getting stuck in one well, allowing it to explore other regions of the potential
landscape.

Vbias(s, t) = Vsystem(s) +
∑
t′≤t

W exp

(
−(s− s(t′))2

2σ2

)
where:

86 Atomistic Simulation in Materials Modeling

• W is the height of the Gaussian, which controls the magnitude of the bias added
at each time step,

• σ is the width of the Gaussian, determining how localized the bias is in the CV
space,

• s(t) represents the value of the CVs at time t.

The bias potential Vbias(s, t) accumulates Gaussians placed at the positions the system
has visited in the CV space, thus gradually filling the wells in the free energy landscape
and pushing the system to explore other areas.

The following code demonstrates the implementation of the bias potential in the
context of metadynamics.

1 import numpy as np

2 import seaborn as sns

3 import matplotlib.pyplot as plt

4 sns.set(font_scale =1.2)

5

6 # Derivative of the potential (force)

7 def potential_force(x):

8 return -4*x**3 + 6*x

9

10 def gaussian_bias(x, centers , width =0.1, height =0.1):

11 bias = 0

12 for c in centers:

13 bias += height * np.exp(-0.5 * (x - c)**2 / width **2)

14 return bias

15

16 # Derivative of the Gaussian bias (force due to bias)

17 def bias_force(x, centers , width =0.1, height =0.1):

18 force = 0

19 for c in centers:

20 force += height * (x - c) / (width **2) * np.exp(-0.5 * (x - c)

**2 / width **2)

21 return force

22

23 # Time evolution of the particle using Langevin dynamics

24 def metaD(steps =20000 , dt=1e-2, gamma =0.02 , temp =0.01):

25 x = 0.5 # initial position

26 x_positions = [x]

27 centers = [] # store the positions where bias is added

28

29 for step in range(steps):

30 # Langevin dynamics with force from the double well potential

31 force = potential_force(x)

32 thermal_force = np.sqrt(2 * gamma * temp / dt) * np.random.

normal ()

33

34 # Apply bias from metadynamics

35 force += bias_force(x, centers)

36

37 # Update position with Langevin equation

38 x += force * dt - gamma * x * dt + thermal_force * np.sqrt(dt)

39 x_positions.append(x)

40

41 # Add Gaussian bias every 100 steps

CHAPTER 7. ENHANCED SAMPLING WITH METADYNAMICS 87

42 if step % 100 == 0:

43 centers.append(x)

44

45 return np.array(x_positions)

46

47 # Run the simulation

48 xs = metaD()

The full exploration of the potential space is visualized in the following figure:

Figure 7.2: Metadynamics simulation in a double well potential.

7.3. How does Metadynamics Work?

Metadynamics simulations can be applied to higher-dimensional systems and more com-
plex potentials, such as chemical reactions, protein folding, and phase transitions. It
typically involves the following steps:

1. Initialization: Select appropriate CVs that describe the transition of interest.
The choice of CVs is critical as they determine how effectively metadynamics can
enhance sampling.

2. Bias Addition: During the simulation, small Gaussian potentials are periodically
added along the CVs to the current position of the system. This gradually dis-
courages the system from revisiting already visited states. The height and width
of these Gaussians are important parameters that control the rate of exploration;
a careful balance must be struck to ensure efficient sampling without overshooting
important regions of the free energy landscape.

88 Atomistic Simulation in Materials Modeling

3. Exploration of the Free Energy Surface: By continuously adding Gaussians,
the system is encouraged to move out of energy minima, eventually allowing the
exploration of the entire relevant free energy landscape. The bias potential effec-
tively smooths out the energy barriers, enabling the system to transition between
states more easily. Over time, the system visits all accessible regions of the free
energy surface, and the accumulated bias provides an estimate of the free energy
differences between states.

7.4. Choice of CVs

The efficiency of metadynamics heavily depends on the proper choice of CVs. Poor
selection can lead to ineffective sampling, as the system may not be driven along the
most relevant pathways. The process of selecting suitable CVs often requires trial and
error or prior knowledge of the system.

7.5. Well-Tempered Metadynamics

In traditional metadynamics, the constant addition of Gaussian potentials can lead to
excessive bias accumulation, which may result in poor sampling or an inaccurate free
energy landscape. Well-tempered metadynamics addresses this by gradually reducing the
height of the Gaussians added over time, which helps prevent oversampling and ensures
that the system does not accumulate too much bias in any particular region. As such, it
is expected to improve convergence and enhance the accuracy of the free energy surface
estimation.

The key idea behind well-tempered metadynamics is to scale the bias deposition rate
according to the amount of bias already present. This scaling is achieved by introducing a
parameter called the bias factor γ, which controls how much the bias potential decreases
as the simulation progresses. The bias factor is related to a fictitious temperature that
effectively dictates how smoothly the bias is added.

The bias potential in well-tempered metadynamics evolves as:

Vbias(s, t) =
∑
t′≤t

W exp

(
−Vbias(s, t

′)

kB∆T

)
exp

(
−(s(t)− s(t′))2

2σ2

)
Compared to the previous equation, an additional exponential term was applied to

scale the Gaussian potential, where
- kB is the Boltzmann constant. - ∆T is the fictitious temperature, defined as ∆T =

Tsystem(γ − 1), where Tsystem is the real temperature of the system.
In standard metadynamics, the height of the Gaussian is fixed at W . In well-tempered

metadynamics, the height becomes W exp [−Vbias(s, t′)/kB∆T] . As Vbias increases over
time, exp [−Vbias(s, t′)/kB∆T] gradually decays, preventing excessive bias accumulation
in any particular region.

• When ∆T → 0, exp [−Vbias(s, t′)/kB∆T] → 0, which means zero Gaussian height,
reverting the simulation to standard MD with zero bias.

• When ∆T → ∞, exp [−Vbias(s, t′)/kB∆T] → 1, resulting in a constant Gaussian
height W , returning to standard metadynamics.

CHAPTER 7. ENHANCED SAMPLING WITH METADYNAMICS 89

• By choosing a suitable ∆T between 0 and infinity, low V regions will be visited
more frequently, allowing better exploration without excessive bias accumulation.

In essence, well-tempered metadynamics allows the atomic coordinates R to fluctu-
ate around the system temperature T , while the collective variables s fluctuate around an
elevated temperature T+∆T , promoting barrier-crossing without distorting the partition
function.

In applications where free energy differences between states are of interest, one can
infer F (s) by counting the histogram via F (s) = −T lnN(s, t) in a well-tempered meta-
dynamics simulation. The method provides distinct F (s) values, which can yield insights
into the free energy landscape.

7.6. Advantages of Well-Tempered Metadynamics

Well-tempered metadynamics has several advantages over traditional metadynamics:

1. By reducing the rate of bias deposition over time, it ensures that the system can
focus on the most relevant regions of the free energy surface, leading to a more
accurate reconstruction, which is crucial for systems with multiple metastable states
or complex free energy landscapes.

2. It provides a natural mechanism for achieving convergence of the free energy surface.
As the system becomes more thoroughly explored, the bias added to the system
decreases, ultimately reaching a point where it no longer significantly alters the free
energy landscape. This gradual reduction in bias allows the system to settle into
the correct free energy minima, providing a reliable estimate of the underlying free
energy differences between states.

Well-tempered metadynamics can be applied to a wide range of systems, from simple
model potentials to complex biomolecular and materials science applications. Its ability
to adaptively control the bias potential makes it a versatile tool for studying processes
such as protein folding, chemical reactions, and phase transitions. By providing a more
controlled and convergent approach to free energy estimation, well-tempered metadynam-
ics has become a preferred method for enhanced sampling in many challenging molecular
simulations.

7.7. Further Discussions

Metadynamics is a powerful enhanced sampling technique to overcome the limitations
of traditional MD simulation. Its ability to reconstruct free energy surfaces makes it an
invaluable tool for studying complex molecular systems, phase transitions, and reaction
mechanisms. However, its success depends on careful selection of collective variables
and parameters. By systematically adding bias potentials, metadynamics allows for the
study of rare events and provides detailed insights into the thermodynamics and kinetics
of molecular systems.

• Discuss how the choice of Gaussian parameters can impact ordinary metadynamics
simulations.

90 Atomistic Simulation in Materials Modeling

• Discuss the impact of γ on well-tempered metadynamics simulations.

• Explore the choice of CVs in different kinds of simulations.

8. Introduction to Density Functional
Theory

In the previous chapters, we have primarily focused on the study of MD based approaches
and their applications to materials modeling. Having studied atomic-scale motion using
MD, we now pivot to the quantum mechanical foundation of these interactions—electronic
structure calculations. To simulate materials and molecules more comprehensively, we
need to understand the electronic properties that underpin their behavior. The transition
from classical molecular dynamics to quantum mechanical electronic structure calcula-
tions introduces a new set of techniques and concepts critical for simulating materials at
an even deeper level.

8.1. Schrödinger Equation

In the 1920s and 1930s, Schrödinger proposed the famous equation to calculate the wave-
function Ψ of a quantum system, encapsulating all its physical properties. The time-
independent Schrödinger equation for a system of N interacting electrons is:

ĤΨ(r1, r2, . . . , rN) = EΨ(r1, r2, . . . , rN) (8.1)

where:

• Ĥ is the Hamiltonian operator, including kinetic and potential energies.

• Ψ is the many-electron wavefunction, depending on the positions of all electrons.

• E is the total energy of the system.

The Hamiltonian for such a system is:

Ĥ =
N∑
i=1

(
− ℏ2

2m
∇2

i + Vexternal(ri)

)
+
∑
i<j

e2

4πϵ0|ri − rj|
(8.2)

where:

• The first term represents the kinetic energy of each electron, often denoted as T̂ .

• Vexternal represents the external potential.

• The second summation accounts for electron-electron Coulomb interactions.

91

92 Atomistic Simulation in Materials Modeling

8.2. The Single-Electron System

Let’s first review how to obtain a numerical solution for the simplest case, a single electron
under a given external potential:(

− ℏ2

2m
∇2 + Vexternal(r)

)
Ψ(r) = EΨ(r) (8.3)

A typical solution involves the following steps:

1. Define the discrete grid to describe the wavefunction spanning.

2. Define the external potential (Vexternal) on the given spatial grids.

3. Build up the Hamiltonian matrix (H) on the given spatial grids based on the Vexternal
and kinetic energy operator.

4. Solve for the eigenvalues and eigenvectors of H.

8.2.1 Kinetic Energy Operator

The kinetic energy operator (T̂) for an electron in one dimension is given by the Laplacian
operator, the second derivative of the wavefunction with respect to position:

T̂ = − ℏ2

2m

d2

dx2
(8.4)

Using the finite difference method, the second derivative of a function f(x) on a
discrete grid of points x1, x2, . . . , xN with spacing dx can be approximated by:

d2f

dx2

∣∣∣∣
xi

≈ f(xi+1)− 2f(xi) + f(xi−1)

dx2
(8.5)

This approximation is represented by a matrix acting on the values of f at all grid
points:

T =
1

dx2


−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2

 (8.6)

8.2.2 Solution of a 1D System

The following code demonstrates obtaining a numerical solution in 1D for an arbitrary
potential.

1 # Spatial grid parameters

2 x_min , x_max = -10.0, 10.0

3 N = 1000

4 x = np.linspace(x_min , x_max , N)

5 dx = x[1] - x[0]

6

7 # Define external potential

CHAPTER 8. INTRODUCTION TO DENSITY FUNCTIONAL THEORY 93

8 V_ext = 0.5 * x**2 # harmonic oscillator

9 #V_ext = -1 / np.sqrt((x**2+0.5)) # potential from a positive charge

10

11 # Define kinetic energy operator

12 T = -0.5 * (-2 * np.eye(N) + np.eye(N, k=1) + np.eye(N, k=-1)) / dx**2

13

14 # Total Hamiltonian

15 H = T + np.diag(V_ext)

16

17 # Solve eigenvalue problem

18 energies , wavefunctions = np.linalg.eigh(H)

19

20 # Electron density

21 psi = wavefunctions [:, 0]

22 psi /= np.sqrt(np.sum(np.abs(psi)**2) * dx)

23 rho = np.abs(psi)**2

24

25 # Plot the effective potential

26 fig , axs = plt.subplots(1, 2, figsize =(12, 4))

27

28 axs [0]. plot(x, V_ext , label="$V_{\ mathrm{external }}$", linestyle="--")

29 axs [0]. set_xlabel("x")
30 axs [0]. set_ylabel("Potential")

31 for i in range (3):

32 axs [0]. axhline(energies[i])

33 axs [0]. legend ()

34 axs [0]. set_ylim(0, 10)

35

36 # Plot the electron density

37 for i in range (3):

38 rho = np.abs(wavefunctions [:, i])**2 # Ground state

39 rho /= (rho.sum() * dx)

40 axs [1]. plot(x, rho , label=f"E$_{i}$={ energies[i]:.2f} Ha")

41 axs [1]. plot(x, rho)

42 axs [1]. set_xlabel("x")
43 axs [1]. set_ylabel("Electron Density")

44 axs [1]. legend ()

45

46 plt.tight_layout ()

47 plt.show()

48 plt.savefig("lec_08 -harmonic.pdf")

This Python code solves the Schrödinger equation for a quantum particle in a one-
dimensional potential using finite-difference methods. The script computes the eigen-
values and eigenfunctions of the Hamiltonian matrix, which represents the system, and
visualizes the external potential, energy levels, and electron densities in Fig. 8.1.

The computed kinetic energy and external energy can be validated against known
analytical solutions. For a harmonic oscillator, the total energy of the n-th quantum
state is given by:

En =

(
n+

1

2

)
ℏω,

where n = 0, 1, 2, . . . represents the quantum number. With ℏω = 1 in the arbitrary
unit, En should be equal to 0.5 Hartree, 1.5 Hartree, 2.5 Hartree, ·, which is consistent
with the results in Fig. 8.1.

94 Atomistic Simulation in Materials Modeling

10 5 0 5 10
x

0

2

4

6

8

10
Po

te
nt

ia
l

Vexternal

10 5 0 5 10
x

0.0

0.1

0.2

0.3

0.4

0.5

El
ec

tro
n

De
ns

ity

E0=0.50 Ha
E1=1.50 Ha
E2=2.50 Ha

Figure 8.1: The numerical solution of harmonic oscillator.

To deepen understanding, one should experiment with different external potentials
in the code and analyze the corresponding solutions. This exercise helps illustrate the
physical meaning of each solution, including energy quantization, wavefunctions, and
electron densities.

8.2.3 Solution of a 3D System

Next, let us consider a hydrogen atom in 3 dimension. The following Python code numer-
ically solves the Schrödinger equation for a single electron in a three-dimensional (3D)
softened Coulomb potential using the same finite-difference as described in the previous
section.

1 import numpy as np

2 from scipy.sparse import kron , eye

3 from scipy.sparse import diags , csr_matrix

4 from scipy.sparse.linalg import eigsh # Sparse eigenvalue solver

5 import matplotlib.pyplot as plt

6

7 def kinetic_energy_operator(N, dx):

8 # Define 1D kinetic energy finite difference operator

9 main_diag = -2 * np.ones(N)

10 side_diag = np.ones(N - 1)

11 T_1D = diags ([main_diag , side_diag , side_diag], [0, -1, 1], shape=(

N, N)) / dx**2

12

13 # Build 3D kinetic energy operator using Kronecker products

14 I = eye(N, format="csr") # Identity matrix for each dimension

15 T = kron(kron(T_1D , I), I) + kron(kron(I, T_1D), I) T += kron(kron(

I, I), T_1D)

16

17 return -0.5 * T # Scale by -0.5 for the kinetic energy operator

18

19 # Step 1: Define 3D grid parameters (60*60*60)

20 N = 60 # Grid size along each dimension

21 L = 6 # Simulation box size in Bohr

22 dx = L / N

23 x = np.linspace(-L/2, L/2, N)

CHAPTER 8. INTRODUCTION TO DENSITY FUNCTIONAL THEORY 95

24 y = np.linspace(-L/2, L/2, N)

25 z = np.linspace(-L/2, L/2, N)

26 X, Y, Z = np.meshgrid(x, y, z, indexing="ij")

27

28 R1 = np.array([0, 0, 0])

29 num_electrons = 1.0

30

31 # Step 2: Deifine Softened Coulomb external potential for one proton

32 # To prevent singularity at nuclei , add a soft parameter

33 softening = 0.02

34 V_ext = -1 / np.sqrt((X - R1[0]) **2 + (Y - R1[1]) **2 + (Z - R1[2]) **2 +

softening **2)

35

36 # Step 3: Compute H matrix (stroed in a sparse format)

37 T = kinetic_energy_operator(N, dx)

38 H = T + diags(V_ext.flatten (), 0, shape =(N**3, N**3))

39

40 # Step 4: Solve the single -electron equation

41 energies , orbitals = eigsh(H, k=10, which="SA")

42 print("Energies from the solver\n", energies)

43

44 # Normalize wavefunction to ensure it represents one electron

45 psi = orbitals[:, 0]. reshape ((N, N, N)) # Ground state orbital

46 psi /= np.sqrt(np.sum(np.abs(psi)**2) * dx**3)

47 rho = np.abs(psi)**2 # Electron density

48

49 # Recompute energies with normalized wavefunction and density

50 T_s = np.sum(psi.flatten () * T.dot(psi.flatten ())) * dx**3

51 E_ext = np.sum(rho * V_ext) * dx**3

52

53 # Output energies

54 print(f"Kinetic Energy (T) = {T_s:.6f} Hartree")

55 print(f"External Energy (E_ext). = {E_ext :.6f} Hartree")

56 print(f"Total Energy (E_total)= {T_s + E_ext :.6f} Hartree\n")

57

58 # Plot electron densities for the selected solutions

59 for i in [0, 4, 5]:

60 psi = orbitals[:, i]. reshape ((N, N, N))

61 psi /= np.sqrt(np.sum(np.abs(psi)**2) * dx**3)

62

63 rho = np.abs(psi)**2

64 rho1 = rho[N//2, :, :]

65 print(i, np.sum(rho)*dx**3, np.sum(rho1)*dx**3, rho.max())

66 plt.imshow(rho1 ,

67 origin="lower",

68 vmin=1e-5,

69 vmax=5e-3)

70 plt.xlabel("x (Bohr)")

71 plt.ylabel("y (Bohr)")

72 plt.title(f"Single H atom in level {i}: {energies[i]:.2f} Ha")

73 plt.colorbar(label="Electron Density")

74 plt.show()

To model a hydrogen atom, we first create an external potential on a 60 × 60 × 60
grid. A one-dimensional finite-difference approximation of the kinetic energy operator
is then constructed and extended to three dimensions using Kronecker products. The
Hamiltonian matrix, H = T + Vexternal, is constructed and solved in sparse format for
efficiency. Running this code generates the following output.

96 Atomistic Simulation in Materials Modeling

Energies from the solver

[-0.47800187 -0.0433897 -0.0433897 -0.0433897 0.03139164 0.16645611

0.16645611 0.16645611 0.23494692 0.23494692]

Kinetic Energy (T) = 0.481822 Hartree

External Energy (E_ext). = -0.959824 Hartree

Total Energy (E_total)= -0.478002 Hartree

Note that in the above codes, we also compute the kinetic and external energy to
double check if the implemented code works properly.

T = −1

2

∫
ψ∗(r)∇2ψ(r)d3r

Eexternal =

∫
ρ(r)Vexternal(r)d

3r

The numerical expressions are

T ≈ −1

2

∑
i

ψ∗
i

(
∇2ψ

)
i
dx3

Eexternal ≈
∑
i

ρiVexternal,idx
3

To check if your implmentation is correct, one should compare the results with the
analytical solutions for a single H atom. The energy levels for a hydrogen atom in Hartree
units (where 1 Hartree = 27.2 eV) are given by the formula:

En = − 1

n2
Hartree

In the ground state (1s), hydrogen atom has a kinetic energy of 0.5 Hartree and a
potential energy of -1.0 Hartree, resulting in a total energy of -0.5 Hartree. Our computed
results are consistent with these theoretical values. However, discrepancies arise for the
excited states. For instance, the hydrogen atom should exhibit four degenerate orbitals
(2s, 2px, 2py, and 2pz) with an energy of -0.125 Hartree. In our computation, these
degeneracies are not perfectly captured, likely due to the limited resolution of the numer-
ical grid. Refining the grid further is expected to yield closer agreement with theoretical
results.

Despite these numerical discrepancies, Fig. 8.2 shows the electron density distribu-
tions for the 1s, 2s, and 2p orbitals, which qualitatively align with our expectations
from quantum mechanics. Furthermore, it is worth noting that alternative algorithms
and grid optimization techniques can achieve better accuracy. However, we leave these
improvements as an exercise for the reader to explore.

8.3. Density Functional Theory for Many-Electrons

For systems with multiple electrons, solving the Schrödinger equation becomes intractable
due to electron-electron interactions. Density Functional Theory (DFT), developed by
Walter Kohn and Pierre Hohenberg [11], simplifies this problem by focusing on electron
density ρ(r).

CHAPTER 8. INTRODUCTION TO DENSITY FUNCTIONAL THEORY 97

0 20 40 60 80
x (Bohr)

0

20

40

60

80
y

(B
oh

r)

1s: -0.48 Ha

0.002

0.004

0.006

0.008

0.010

E
le

ct
ro

n
D

en
si

ty

(a)

0 20 40 60 80
x (Bohr)

0

20

40

60

80

y
(B

oh
r)

2s: 0.21 Ha

0.002

0.004

0.006

0.008

0.010

E
le

ct
ro

n
D

en
si

ty

(b)

0 20 40 60 80
x (Bohr)

0

20

40

60

80

y
(B

oh
r)

2p: 0.05 Ha

0.002

0.004

0.006

0.008

0.010

E
le

ct
ro

n
D

en
si

ty

(c)

Figure 8.2: Computed hydrogen orbitals: (a) 1s, (b) 2s, and (c) 2p.

8.3.1 The Kohn and Hohenberg Theorems

The Hohenberg-Kohn theorems lay the foundation of DFT:

1. Uniqueness Theorem: The ground-state electron density ρ0(r) uniquely deter-
mines the external potential Vexternal(r), and hence all properties of the system. This
implies that the many-body problem is effectively reformulated in terms of ρ0(r).

2. Variational Principle: There exists a universal functional E[ρ] such that the
ground-state energy E0 can be obtained variationally:

E0 = min
ρ

[E[ρ]] = min
ρ

[
F [ρ] +

∫
Vexternal(r)ρ(r) dr

]

Here, F [ρ] is a universal functional of the electron density, independent of the ex-
ternal potential, and contains the kinetic and electron-electron interaction energies.

The first theorem relies on the assumption that the external potential uniquely deter-
mines the Hamiltonian, and hence the ground-state wavefunction. The electron density,
being a property of the wavefunction, indirectly determines the external potential. The
variational principle follows naturally, as any trial density yields an energy equal to or
higher than the true ground-state energy. For more details, please refer to the original
work by Kohn and Hohenberg [12].

8.3.2 The Kohn-Sham Equations

While the Uniqueness theorems provide a conceptual framework, they do not offer a prac-
tical way to compute F [ρ], which includes the complex electron-electron interactions. In
the following work, Kohn and Sham introduced non-interacting electrons to approximate
the ground-state density of an interacting system [12]. The total energy functional be-
comes:

E[ρ] = Ts[ρ] + Eexternal[ρ] + EHartree[ρ] + EXC[ρ] (8.7)

where:

• Ts[ρ]: Kinetic energy of non-interacting electrons.

98 Atomistic Simulation in Materials Modeling

• Eexternal[ρ]: Interaction with external potential.

• EHartree[ρ]: Hartree energy.

• EXC[ρ]: Exchange-correlation energy.

The electron density is determined by solving the Kohn-Sham equations:[
− ℏ2

2m
∇2 + Veff(r)

]
ϕi(r) = ϵiϕi(r) (8.8)

where ϕi(r) are the Kohn-Sham orbitals, ϵi are their corresponding energies, and the
effective potential Veff(r) is given by:

Veff(r) = Vexternal(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δEXC[ρ]

δρ(r)

8.3.3 Effective Potential in Kohn-Sham Equations

Technically, we can solve the single electron equation as long as the Effective potential
Veff(r) is known. Following the spirit of DFT, we seek to express all potential terms
(Vexternal, EHartree and VXC), base on the electron density.

First, for a system with nuclei located at positions Rj and with nuclear charges Zj,
the external potential at a point r in space is given by:

Vexternal(r) = −
∑
j

Zj

|r−Rj|

Second, the Hartree potential VHartree(r) is the electrostatic potential felt by an
electron at position r due to the total electron density:

VHartree(r) =

∫
ρ(r′)

|r− r′|
dr′ (8.9)

In practice, the integral is a long-range term and it needs to be computed using
techniques such as Fourier transforms or Poisson solvers to handle the long-range nature
of the Coulomb interaction.

The corresponding Hartree energy is given by:

EHartree =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
d3rd3r′ (8.10)

This integral computes the repulsion between all pairs of infinitesimal density elements
at positions r and r′. In a discrete grid, we can approximate this as:

EHartree ≈
1

2

∑
i,j

ρiρj
|ri − rj|

dx3dx3 (8.11)

Finally, the Exchange-Correlation Functional is a tricky term that represents the
difference between the true kinetic and electron-electron interaction energies and those of
the non-interacting reference system. The exact form is unknown. Hence approximations
are necessary.

CHAPTER 8. INTRODUCTION TO DENSITY FUNCTIONAL THEORY 99

EXC =

∫
ϵXC(ρ(r))ρ(r)d3r ≈

∑
i

ϵXC(ρi)ρidx
3 (8.12)

where ϵXC(ρ) is the exchange-correlation energy density per electron. It is typically
split into exchange and correlation parts to represent the energy due to exchange and
correlation effects.

ϵXC(ρ) = ϵX(ρ) + ϵC(ρ) (8.13)

The effective potential includes Vexternal(r), VHartree(r), and VXC(r):

VHartree(r) =

∫
ρ(r′)

|r− r′|
dr′ (8.14)

In the original paper, it was found that when the electron density does not vary
significantly (e.g., uniform electron gas, nearly free electrons in a metal). It can be
estimated by local density approximation LDA. For the exchange energy in the LDA,
the commonly used expression (for spin-unpolarized systems) is:

ϵX(ρ) = −3

4

(
3

π

)1/3

ρ1/3 (8.15)

VX(ρ) =
4

3
ϵX(ρ) (8.16)

The correlation energy ϵC(ρ) depends on the specific form chosen. The popular yet
simple parametrizations for ϵC(ρ) in LDA are the Vosko, Wilk, and Nusair (VWN) [13]
and the Perdew-Zunger correlation functional [14], which are based on fitting to Monte
Carlo data. The correlation energy per electron is given by a piecewise function that
depends on the Wigner-Seitz radius rs, which is related to the electron density by:

rs =

(
3

4πρ

)1/3

For spin-unpolarized systems, the Perdew-Zunger correlation energy per electron can
be expressed as:

ϵC(rs) =

{
A+Brs ln(rs) + Crs ln(rs) +Drs for rs ≤ 1

γ/(1 + β1
√
rs + β2rs) for rs > 1

(8.17)

and the correlation potential is

VC(rs) =

{
A ln rs + (B − A

3
) + 2

3
Crs ln(rs) + 2D−C

3
rs for rs ≤ 1

ϵC(1 + 7
6
β1
√
rs + 4

3
β2rs)/(1 + β1

√
rs + β2rs) for rs > 1

(8.18)

where the relevant parameters are A=0.0311, B=-0.048, C=0.002, D=-0.0116, γ =
-0.1423, β1=1.0529 and β2 = 0.3334.

100 Atomistic Simulation in Materials Modeling

Initial Guess of ρ(r)

Compute Veff(r)

Solve KS Equations

Recompute ρ(r)

Is ρ(r) Converged?

Terminate

No

Yes

Figure 8.3: Iterative process to solve the Kohn-Sham equations.

8.3.4 Iterative Update of Electron Density

After choosing the form of EXC, the total energy can be expressed as electron density.
Since the electron density becomes the only concern of interest, one can start with an
initial guess of the wavefunction and then solve the KS equations. From each individual
Kohn-Sham Equation, we get ϕi(r) and ϵi. After knowing each ϕi(r), the Total Electron
Density can be re-estimated as follows:

ρ(r) =
occ∑
i

|ϕi(r)|2

One can then use the updated ρ(r) to run another iteration. Repeating the iterations
several times, one expect to the convergence of ρ(r) and total energy.

8.3.5 Practical Workflow

In short, DFT proposed two important concepts to solve the many electron problems.

1. The simplification from many electron equations to a set of single electron KS equa-
tions. To enable this transition, one needs to seek an optimal effective potential for
the single KS equations. This requires the introduction of Hartree potential(VHartree)
and Exchange-Correlation potential (VXC) on top of the traditional single electron
problems based on (T + Vexternal) only.

CHAPTER 8. INTRODUCTION TO DENSITY FUNCTIONAL THEORY 101

2. When solving the KS equations, we use the electron density (ρ) to construct the
Ĥ. Thus all potential terms needs to be expressed as the function of ρ.

After knowing ρ, the tentative solution of KS energy and orbital can be obtained.
From the orbital, we can get the updated ρ and Veff and then repeat the process iteratively.
When the system reaches a steady state, i.e., the ρ and Veff no longer change, we can
terminate this calculation. The entire procedure can be summarized in Fig. 8.3.

8.4. Summary

In this chapter, we began with the foundational quantum mechanical framework for
electronic structure calculations, starting with the Schrödinger equation. For single-
electron systems, we demonstrated how to numerically solve the equation using finite-
difference methods, providing insights into energy levels, wavefunctions, and electron
densities.

Transitioning to multi-electron systems, we highlighted the limitations of directly solv-
ing the many-body Schrödinger equation due to the complexity introduced by electron-
electron interactions. As a solution, DFT was introduced as a groundbreaking approach
to simplify the many-electron problem. The Hohenberg-Kohn theorems provided the the-
oretical foundation for DFT, demonstrating that the ground-state properties of a system
can be uniquely determined by its electron density. Additionally, the Kohn-Sham equa-
tions offered a practical framework for approximating the ground-state electron density
through non-interacting electrons and the concept of the effective potential.

Key aspects of the DFT formalism, including the Hartree energy, exchange-correlation
energy, and the iterative procedure for achieving self-consistency, were discussed in detail.
We also outlined the practical workflow for solving the Kohn-Sham equations, emphasiz-
ing the importance of convergence and the role of approximations in exchange-correlation
functionals. Mastering these concepts lays the groundwork for realistic calculations of the
electronic properties of materials, which will be explored in the following chapters.

102 Atomistic Simulation in Materials Modeling

9. DFT Simulation of the Hydrogen
Molecule

Having learned the basic concept of DFT, we will continue to apply it to simulate a more
complex system than a single-electron system: the H2 molecule. This small size is ideal
for demonstrating the DFT method in a manageable way.

By solving for the ground-state energy and electron density of H2, we hope to better
understand the numerical aspects of the DFT method. In addition, we will analyze the
results to understand the bonding in H2 and the electron distribution.

H H

Figure 9.1: Representation of an H2 Molecule

9.1. Basic Setup

In an H2 molecule, we need to consider the following variables in the Kohn-Sham equation.

• Nuclei: Two protons located at positions R1 and R2.

• Electrons: Two electrons interacting with the protons and each other.

The Hamiltonian is given by:

Ĥ = T̂e + V̂external + V̂ee + V̂nn (9.1)

where:

• T̂e: Kinetic energy of the electrons.

• V̂external: External potential due to nuclei.

• V̂ee: Electron-electron interaction.

• V̂nn: Nucleus-nucleus interaction.

In the Kohn-Sham formalism, this reduces to a single Kohn-Sham equation. For H2,
both electrons occupy the same Kohn-Sham orbital.[

− ℏ2

2m
∇2 + Veff(r)

]
ϕi(r) = ϵiϕi(r) (9.2)

103

104 Atomistic Simulation in Materials Modeling

9.2. Effective Potentials

9.2.1 External Potential

For an H2 molecule, the external potential is given by the Coulomb interaction with the
two protons:

Vexternal(r) = − 1√
|r−R1|2 + α2

− 1√
|r−R2|2 + α2

(9.3)

where α is a small softening parameter to avoid singularities.

9.2.2 Hartree Potential and Energy

The Hartree potential represents the classical electrostatic potential at a point r due to
the electron density ρ(r). It is defined as:

VHartree(r) =

∫
ρ(r′)

|r− r′|
dr′ (9.4)

Computing this integral directly in real space can be computationally expensive, es-
pecially for large systems. To address this, the Hartree potential can be calculated more
efficiently using a Fourier-space approach. In reciprocal space, the Hartree potential is
expressed as:

VHartree(k) =
4πρ(k)

|k|2
(9.5)

where ρ(k) is the Fourier transform of the electron density. The corresponding Hartree
energy is then given by:

EHartree =
1

2

∫
ρ(r)VHartree(r)dr (9.6)

This Fourier-space method significantly reduces the computational cost of evaluating
the Hartree potential, making it well-suited for numerical simulations involving a large
number of grid points.

9.2.3 Exchange and Correlation

The exchange-correlation energy, EXC, accounts for the quantum interactions between
electrons. The exchange-correlation potential, VXC(r), is defined as:

VXC(r) =
δEXC[ρ]

δρ(r)
(9.7)

Using the Local Density Approximation (LDA), the exchange-correlation energy is:

ELDA
XC [ρ] =

∫
ϵXC(ρ(r))ρ(r) dr (9.8)

CHAPTER 9. DFT SIMULATION OF THE HYDROGEN MOLECULE 105

9.3. Python Implementation

Based our previous implementation on single electron system, we create the following
Python code to compute the ground state of an H2 molecule using DFT though the
self-consistent field (SCF) calculation.

1 import numpy as np

2 from scipy.sparse import kron , eye

3 from scipy.sparse import diags , csr_matrix

4 from scipy.fft import fftn , ifftn

5 from scipy.sparse.linalg import eigsh

6 import matplotlib.pyplot as plt

7

8 # Define 3D grid parameters

9 N = 80 #120 # Grid size along each dimension

10 L = 6 #40 # Simulation box size in Bohr

11 dx = L / N

12 x = np.linspace(-L/2, L/2, N)

13 y = np.linspace(-L/2, L/2, N)

14 z = np.linspace(-L/2, L/2, N)

15 X, Y, Z = np.meshgrid(x, y, z, indexing="ij")

16

17 # Positions of the two protons in H2

18 R1 = np.array ([-0.7, 0, 0])

19 R2 = np.array ([0.7, 0, 0])

20 num_electrons = 2.0

21 E_nuc = 1.0 / (R2[0]-R1[0])

22

23 # Softened Coulomb potential for two protons

24 alpha = 0.1

25 V_ext = -1 / np.sqrt((X - R1[0]) **2 + (Y - R1[1]) **2 + (Z - R1[2]) **2 +

alpha **2)

26 V_ext += -1 / np.sqrt((X - R2[0]) **2 + (Y - R2[1]) **2 + (Z - R2[2]) **2

+ alpha **2)

27

28 # Initial guess for electron density

29 rho = np.exp(-1 * ((X - R1[0]) **2 + (Y - R1[1]) **2 + (Z - R1[2]) **2))

30 rho += np.exp(-1 * ((X - R2[0]) **2 + (Y - R2[1]) **2 + (Z - R2[2]) **2))

31 total_density = np.sum(rho) * dx**3

32 rho *= num_electrons / total_density

33

34 # Define FFT -based Poisson solver for Hartree potential

35 def compute_hartree_potential(rho):

36 kx = 2 * np.pi * np.fft.fftfreq(N, d=dx)

37 ky = 2 * np.pi * np.fft.fftfreq(N, d=dx)

38 kz = 2 * np.pi * np.fft.fftfreq(N, d=dx)

39 KX , KY , KZ = np.meshgrid(kx, ky, kz, indexing="ij")

40 k2 = KX**2 + KY**2 + KZ**2

41 k2[0, 0, 0] = 1 # Avoid division by zero

42

43 rho_k = fftn(rho)

44 V_H_k = 4 * np.pi * rho_k / k2

45 V_H_k[0, 0, 0] = 0 # Set the zero -frequency term to zero

46

47 V_H = np.real(ifftn(V_H_k))

48 return V_H #* 2

49

50 def kinetic_energy_operator(N, dx):

106 Atomistic Simulation in Materials Modeling

51 # Define 1D kinetic energy finite difference operator

52 main_diag = -2 * np.ones(N)

53 side_diag = np.ones(N - 1)

54 T_1D = diags ([main_diag , side_diag , side_diag],

55 [0, -1, 1],

56 shape =(N, N))

57 T_1D /= dx**2

58

59 # Build 3D kinetic energy operator using Kronecker products

60 I = eye(N, format="csr") # Identity matrix for each dimension

61 T = kron(kron(T_1D , I), I) + kron(kron(I, T_1D), I) + kron(kron(I,

I), T_1D)

62

63 return -0.5 * T # Scale by -0.5

64

65 # SCF loop parameters

66 tolerance = 1e-6

67 max_iterations = 100

68 damping_factor = 0.5

69

70 # Kinetic energy operator (sparse)

71 T = kinetic_energy_operator(N, dx); print(T.shape)

72

73 for iteration in range(max_iterations):

74 # Compute Hartree and XC potentials

75 V_H = compute_hartree_potential(rho)

76 V_XC = -0.75 *(3 / np.pi)**(1 / 3) * rho **(1 / 3)

77 V_eff = V_ext + V_H + V_XC

78

79 # Construct H

80 V_eff_flat = V_eff.flatten ()

81 H = T + diags(V_eff_flat , 0, shape =(N**3, N**3))

82

83 # Solve the Kohn -Sham equation with a sparse eigenvalue solve

84 energies , orbitals = eigsh(H, k=1, which="SA")

85 psi = orbitals[:, 0]. reshape ((N, N, N))

86 psi /= np.sqrt(np.sum(np.abs(psi)**2) * dx**3)

87

88 # Update electron density with normalization

89 rho_new = num_electrons * np.abs(psi)**2

90

91 # Calculate energies for this iteration

92 T_s = 2* np.sum(orbitals[:, 0] * T.dot(orbitals[:, 0])) * dx**3

93 E_H = 0.5 * np.sum(rho * V_H) * dx**3

94 E_ext = np.sum(rho * V_ext) * dx**3

95 E_XC = np.sum(rho * V_XC) * dx**3

96 E_total = T_s + E_ext + E_H + E_XC + E_nuc

97

98 # Print the energies

99 print(f"Iteration {iteration + 1}:")

100 print(f"Kinetic Energy (T) = {T_s:.6f} Hartree")

101 print(f"External Energy (E_ext)= {E_ext :.6f} Hartree")

102 print(f"Hartree Energy (E_H) = {E_H:.6f} Hartree")

103 print(f"Exchange -Correlation (E_XC) = {E_XC :.6f} Hartree")

104 print(f"Total Effective Energy = {E_total :.6f} Hartree")

105 print(f"Solver KS HOMO Energy = {energies [0]:.6f} Hartree\n")

106 # Damping update

107 rho = (1 - damping_factor) * rho + damping_factor * rho_new

CHAPTER 9. DFT SIMULATION OF THE HYDROGEN MOLECULE 107

108 total_density = np.sum(rho) * dx**3

109

110 # Check convergence

111 if np.linalg.norm(rho_new - rho) < tolerance:

112 print(f"Converged after {iteration + 1} iterations")

113 break

114 else:

115 print("Did not converge within the maximum number of iterations")

The code iteratively solves the KS equations. In each iteration, the electron density is
updated from the orbitals, and the effective potential is recalculated using the new density.
This process continues until the electron density converges (i.e., when the difference
between the new and old density is smaller than a set tolerance).

Here the most expensive part of calculation lies in the solving the eigenvalue of Hamil-
tonian matrix. Due to the numerical grid setting, the size of Hamiltonian has a cubic
relation with respect to the number of grids in each dimension. The function eigsh from
Scipy is used to solve the eigenvalue problem for the Hamiltonian with the sparsifica-
tion technique, returning the Kohn-Sham energies and orbitals. Once the Hamiltonian
is constructed and solved, the Kohn-Sham orbitals ϕi(r) are used to update the electron
density ρ(r). The SCF loop continues until the electron density converges.

An example output looks like the following

Iteration 1:

Kinetic Energy (T) = 1.263639 Hartree

External Energy (E_ext)= -3.557743 Hartree

Hartree Energy (E_H) = 0.545992 Hartree

Exchange-Correlation (E_XC) = -0.819774 Hartree

Total Effective Energy = -1.853602 Hartree

Solver HOMO Energy = -1.046968 Hartree

Iteration 2:

Kinetic Energy (T) = 1.256039 Hartree

External Energy (E_ext)= -3.599140 Hartree

Hartree Energy (E_H) = 0.545473 Hartree

Exchange-Correlation (E_XC) = -0.812328 Hartree

Total Effective Energy = -1.895671 Hartree

Solver HOMO Energy = -1.046764 Hartree

Iteration 3:

Kinetic Energy (T) = 1.253817 Hartree

External Energy (E_ext)= -3.614615 Hartree

Hartree Energy (E_H) = 0.543885 Hartree

Exchange-Correlation (E_XC) = -0.809045 Hartree

Total Effective Energy = -1.911672 Hartree

Solver HOMO Energy = -1.047270 Hartree

To provide a comparison for convergence values in the Kohn-Sham DFT iterations,
here are the typical reference values for the energy components of the hydrogen molecule
[15]:

Clearly, the results qualitatively agree with the DFT results found in the literature,
except for a notable underestimation of the Hartree energy. If time allows, one can repeat

108 Atomistic Simulation in Materials Modeling

Table 9.1: Energy Components of the H2 Molecule Simulation

Energy Component Value Range (Hartree)

Kinetic Energy (T) 1.25± 0.05
External Energy (Eexternal) −3.60± 0.20
Hartree Energy (EHartree) 1.25± 0.10
Exchange-Correlation Energy (EXC) −0.85± 0.05
Total Energy −1.19± 0.02
HOMO Energy −0.60± 0.05

the simulation by increasing L and N helps mitigate edge effects, especially for long-range
interactions such as the Hartree term. Although it requires a higher computational cost,
this should provide a more accurate representation of the continuum electron density,
ensuring that calculations remain closer to these benchmark values.

9.4. Physical Interpretation

The electron density can also be analyzed to verify whether the calculation successfully
reproduces the well-known bonding and antibonding characteristics of the ground and
first excited states. The following code provides a straightforward implementation for
recalculating the electron density from the eigenfunctions and visualizing it in the 2D
xy-plane.

1 # Get the first two solutions

2 energies , orbitals = eigsh(H, k=2, which="SA")

3

4 # Plot the ground state at z=0 plane

5 psi = orbitals[:, 0]. reshape ((N, N, N)) # Ground state orbital

6 psi /= np.sqrt(np.sum(np.abs(psi)**2) * dx**3)

7 rho = np.abs(psi)**2

8

9 plt.contourf(rho[:, :, N//2],

10 extent=(-L/2, L/2, -L/2, L/2),

11 origin="lower")

12 plt.colorbar(label="Electron Density")

13 plt.xlabel("x (Bohr)")

14 plt.ylabel("y (Bohr)")

15 plt.savefig("H2 -bond.png")

16 plt.close()

17

18 # Plot the first excited state at z=0 plane

19 psi = orbitals[:, 1]. reshape ((N, N, N))

20 psi /= np.sqrt(np.sum(np.abs(psi)**2) * dx**3)

21 rho = np.abs(psi)**2

22 rho *= num_electrons / (np.sum(rho) * dx**3)

23

24 plt.contourf(rho[:, :, N//2],

25 extent=(-L/2, L/2, -L/2, L/2),

26 origin="lower")

27 plt.colorbar(label="Electron Density")

28 plt.xlabel("x (Bohr)")

29 plt.ylabel"y (Bohr)")

CHAPTER 9. DFT SIMULATION OF THE HYDROGEN MOLECULE 109

30 plt.savefig("H2 -antibond.png")

2 0 2
x (Bohr)

2

1

0

1

2
y

(B
oh

r)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

El
ec

tro
n

De
ns

ity

(a) Bonding

2 0 2
x (Bohr)

2

1

0

1

2

y
(B

oh
r)

0.00
0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24

El
ec

tro
n

De
ns

ity

(b) Antibonding

Figure 9.2: The DFT simulated electron density for bonding and antibonding states in
a H2 molecule.

The final results are shown in Fig. 9.2. For the ground state, there is a strong
overlap between the electron densities around the two hydrogen nuclei, indicating the
formation of a bonding state. In contrast, for the first excited state, the electron density
is repelled from the region between the two nuclei, suggesting an anti-bonding state for
the hydrogen molecule. These results are consistent with the well-known molecular orbital
theory, which describes bonding and antibonding states as arising from constructive and
destructive interference of atomic orbitals, respectively.

110 Atomistic Simulation in Materials Modeling

9.5. Summary

We successfully developed a computational code to simulate the H2 molecule using the
Kohn-Sham formalism within a numerical grid framework. The final numerical results
demonstrate that most energy components quantitatively agree with previously reported
DFT results in the literature, with the exception of the Hartree energy. It is anticipated
that adopting a finer grid resolution could improve the accuracy of Hartree energy at
the expense of higher computational cost. Despite these limitations, the simplicity of the
script implemented provides an accessible platform to gain hands-on experience with the
numerical procedures involved in solving the Kohn-Sham equations and to deepen the
understanding of chemical bonding in simple molecules such as H2.

10. Efficient DFT via the Localized
Basis Set

In the previous chapter, we have implemented a straightforward DFT approach to com-
pute the electronic structure of the H2 molecule. Although it can reproduce the bond-
ing and antibonding state, the calculation, based on numerical grids on the real space,
required diagonalizing a large Hamiltonian matrix, which can be computationally ex-
pensive for systems with many electrons. Moreover, the Hamiltonian matrix is typically
sparse because the electron density decays exponentially far from the nucleus, leading to
negligible overlap for basis functions centered on distant atoms. This sparsity suggests
opportunities for optimization.

One such optimization involves the use of localized basis sets, which allow us to
represent wavefunctions more efficiently. In this chapter, we will introduce the concept of
localized basis sets, starting with the Slater-type orbital, and discuss their role in reducing
computational costs while maintaining accuracy.

10.1. The Slater-type Orbital Basis Set

The Slater-type orbital (STO) basis set is a class of atomic orbital basis functions widely
used in quantum chemistry to approximate the wavefunctions of electrons in atoms and
molecules. These basis functions are named after John C. Slater, who introduced them to
capture the essential features of atomic orbitals derived from solutions to the Schrödinger
equation for hydrogen-like atoms.

The general form of an STO basis function is:

χnlm(r) = Nrn−1e−ζrYlm(θ, ϕ) (10.1)

where:

• N is a normalization constant.

• r is the radial distance from the nucleus.

• n is the principal quantum number (usually a positive integer).

• ζ is an exponent (often called the orbital exponent) that controls the decay rate of
the function with distance from the nucleus.

• Ylm(θ, ϕ) is a spherical harmonic function.

111

112 Atomistic Simulation in Materials Modeling

In this formula, only ζ is a constant related to the effective charge of the nucleus,
the nuclear charge being partly shielded by electrons. Historically, the effective nuclear
charge was estimated by Slater’s rules.

1. Electrons in the same n-shell shield 0.35 (except 1s, where it’s 0.30).

2. Electrons in the (n-1)-shell shield 0.85.

3. Electrons in shells n-2 or lower shield 1.0.

Empirically determined ζ values are often tabulated in quantum chemistry and physics
resources. Some example values are shown in the following table.

Table 10.1: STO ζ values for selected elements and orbitals

Element Orbital ζ

H 1s 1.00
He 1s 1.69
C 1s 6.00
C 2s 1.72
C 2p 1.62

10.1.1 Numerical Behaviors

According to Slater, the STO is designed to decay exponentially with distance r from the
nucleus, mimicking the behavior of atomic orbitals.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # Define the radial part of the STO for s, p, and d orbitals

5 def sto_radial_s(r, zeta , n):

6 """

7 Slater -type orbital for s orbitals.

8 """

9 return r**(n-1) * np.exp(-zeta * r)

10

11 def sto_radial_p(r, zeta , n):

12 """

13 Slater -type orbital for p orbitals.

14 """

15 return r**(n-1) * np.exp(-zeta * r) * r

16

17 # Parameters

18 r = np.linspace(0, 10, 200) # Radial distance from the nucleus

19 zeta_1s = 1.0

20 zeta_2s = 0.5

21 zeta_2p = 0.5

22

23 # Radial wave functions

24 radial_1s = sto_radial_s(r, zeta_1s , 1)

25 radial_2s = sto_radial_s(r, zeta_2s , 2)

26 radial_2p = sto_radial_p(r, zeta_2p , 2)

27

CHAPTER 10. EFFICIENT DFT VIA THE LOCALIZED BASIS SET 113

−1 0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

Radial distance r

R
ad

ia
l

p
ar

t
of

S
T

O

1s
2s
2p

Figure 10.1: Slater-type Orbitals (STO) for 1s, 2s, 2p.

28 # Plot the radial functions

29 plt.figure(figsize =(10, 8))

30 plt.plot(r, radial_1s , label="1s")

31 plt.plot(r, radial_2s , label="2s")

32 plt.plot(r, radial_2p , label="2p")

33 plt.xlabel("Radial distance r")
34 plt.ylabel("Radial part of STO")

35 plt.title("Slater -type Orbitals (STO) for 1s, 2s, 2p")

36 plt.legend ()

37 plt.show()

In addition, STOs include spherical harmonics Ylm(θ, ϕ) to account for the angular
dependence, allowing the STOs to represent orbitals with various shapes, such as.

1. s-orbitals (l = 0): Spherically symmetric.

2. p-orbitals (l = 1): Dumbbell-shaped.

3. d-orbitals (l = 2) and higher angular momentum orbitals: More complex shapes.

This combination of radial and angular components makes STOs flexible and capable
of approximating a wide range of orbital types.

10.1.2 Limitations

Although STOs are a good approximation to the shape of atomic orbitals, they are
rarely used directly in practical quantum chemistry calculations. This is because the
evaluation of two-electron integrals (which are required in Hartree-Fock and post-Hartree-
Fock methods) with STOs is computationally expensive. Specifically, the overlap, kinetic,
and electron repulsion integrals involving STOs do not have simple analytical solutions
and must be evaluated numerically, which is slow and inefficient. In general, STOs are not
orthogonal to each other. This lack of orthogonality arises because STOs do not inherently
satisfy the orthogonality condition; they are designed primarily to approximate the shape
and decay of hydrogen-like atomic orbitals rather than to be orthogonal.

114 Atomistic Simulation in Materials Modeling

10.2. Gaussian-type orbitals

Gaussian-type orbitals (GTOs) are widely used in quantum chemistry as numerical ap-
proximations to STOs. Their popularity stems from their ability to enable analytical
solutions for integrals, making computations significantly faster and more efficient. How-
ever, GTOs differ from STOs in key aspects: they do not decay as quickly with distance
from the nucleus and do not resemble the shape of atomic orbitals as closely. To over-
come this limitation, Gaussian basis sets are constructed by combining multiple GTOs to
better approximate STOs, a method known as STO-nG, where each STO is represented
by n Gaussians.

10.2.1 Linear Combination of Multiple Gaussian

A common Gaussian takes the following form,

χnlm
GTO(r) = brn−1e−αr2Yl,m(θ, ϕ) (10.2)

where b is the coefficients to normalize wavefunction, n is a parameter that defines the
orbital’s angular momentum (s-, p-, or d-type orbitals), α is a Gaussian exponent that
controls the spread of the Gaussian. The exponential term, e−αr2 , causes the Gaussian
function to decay more rapidly than an STO, making a single GTO unsuitable for directly
replicating the decay behavior of STOs.

Gaussian functions decay more quickly than Slater functions, so a single Gaussian
function cannot perfectly approximate an STO. However, by combining several Gaussian
functions with different exponents (α) and coefficients (b), we can closely approximate
the radial part of a STO.

χn
STO-3G(r) =

3∑
i=1

biNir
n−1e−αir

2

, (10.3)

The values of bi and αi are chosen to best approximate the shape of the Slater-type
orbital for each type of atomic orbital (1s, 2s, 2p, etc.). Ni is the normalization constants
to ensure ∫

Ne−αr2dr3 = 1.0.

As we will discuss later, N = (2α/π)3/4.
For a 1s atomic orbital, the STO-3G function would be:

χSTO-3G(r) = b1N1e
−α1r2 + b2N2e

−α2r2 + b3N3e
−α3r2 , (10.4)

where the coefficients bi and exponents αi are predefined values from Least-squares
fitting o match the characteristics of a 1s Slater-type orbital as closely as possible [16].
Note that Ylm is omitted for the s-orbital. Table 10.2 lists a few selected atomic orbitals.

More parameters can be found at https://www.basissetexchange.org. These basis
sets are commonly used for smaller molecules and are considered minimal basis sets,
meaning they use the minimum number of orbitals required to represent each electron
in the system. Fig. 10.2 shows the comparison between different STO-nG basis set in
reproducing the original hydrogen’s 1s orbital. Clearly, the more Gaussian functions
(higher n) used, the better the approximation to the original STO, but at a higher
computational cost.

https://www.basissetexchange.org

CHAPTER 10. EFFICIENT DFT VIA THE LOCALIZED BASIS SET 115

Table 10.2: STO-3G Basis Set Parameters for selected atomic orbitals.

H (1s) He (1s) C (1s) C (2s) C (2p)
α1 3.425250914 6.362421394 71.61683735 2.941249355 2.941249355
α2 0.6239137298 1.158922999 13.04509632 0.6834830964 0.6834830964
α3 0.1688554040 0.3136497915 3.530512160 0.2222899159 0.2222899159
b1 0.1543289673 0.1543289673 0.1543289673 -0.09996722919 0.1559162750
b2 0.5353281423 0.5353281423 0.5353281423 0.3995128261 0.6076837186
b3 0.4446345422 0.4446345422 0.4446345422 0.7001154689 0.3919573931

0 0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

r (Bohr radii)

W
av

ef
u

n
ct

io
n

A
m

p
li

tu
d

e STO
STO-1G
STO-2G
STO-3G
STO-4G

Figure 10.2: Comparison of STO-nG approximations for the hydrogen 1s orbital.

10.3. Other flavors of Basis Sets

In addition to STO-nG, there also exists other flavors of Basis Sets. Among them, the
most popular one is Pople Basis Sets, which are named by specific conventions. They
include,

• Split-Valence Basis Sets: They split the core and valence orbitals. For instance,
3-21G uses three Gaussians for core orbitals, and a combination of two and one
Gaussian for the valence orbitals.

• Polarized Basis Sets: Include additional functions to account for electron correla-
tion. For example, 6-31G(d) adds a d-type polarization function to improve flexi-
bility.

• Diffuse Functions: Add extra Gaussians with low exponents for loosely bound elec-
trons (like anions or excited states), denoted as 6-31+G or 6-31++G.

10.4. Mathematical Properties of Gaussians

The choice of Gaussian is mainly motivated by several key properties of Gaussian function,
including

116 Atomistic Simulation in Materials Modeling

• The integral of Gaussian can be analytically derived.

• The derivative of Gaussian remains a Gaussian

• The product of two Gaussian functions remains Gaussian.

Before the actual physical discussion, let us first review the integral calculation from
mathematical perspective.

10.4.1 Integral of Single Gaussian

For a Gaussian function in one dimension is typically written as:

f(x) = Ae−αx2

The integral is: ∫ ∞

−∞
Ae−αx2

dx = A

√
π

α

Extend it to n-dimension space Rn, the integral is∫
Rn

Ae−α|r|2dnr = A
(π
α

)n/2
(10.5)

Another important integral is the error function, often denoted as erf(x), is a math-
ematical function used to measure the probability of a value falling within a certain range
of a normal distribution (Gaussian distribution). The error function is defined as:

erf(x) =
2√
π

∫ x

0

e−t2 dt (10.6)

10.4.2 Integral of Gaussian Product

Consider two Gaussian functions centered at different points R1 and R2:

g1(r) = e−α1|r−R1|2 , g2(r) = e−α2|r−R2|2

The product of these two functions is:

g1(r)g2(r) = e−α1|r−R1|2e−α2|r−R2|2

= e−(α1|r−R1|2+α2|r−R2|2).

Expand the terms inside the exponent:

|r−R1|2 = (r−R1) · (r−R1) = |r|2 − 2r ·R1 + |R1|2,

|r−R2|2 = (r−R2) · (r−R2) = |r|2 − 2r ·R2 + |R2|2,
Substituting them to the product

g1(r)g2(r) = exp
[
−α1|r|2 + 2α1r ·R1 − α1|R1|2 − α2|r|2 + 2α2r ·R2 − α2|R2|2

]
= exp

[
−(α1 + α2)|r|2 + 2(α1R1 + α2R2) · r− α1|R1|2 − α2|R2|2

]
.

CHAPTER 10. EFFICIENT DFT VIA THE LOCALIZED BASIS SET 117

The exponent can be rewritten in a form that shows the resulting function is Gaussian:

g1(r)g2(r) = exp
[
−γ |r−P|2

]
× exp

[
−α1α2

γ
|R1 −R2|2

]
, (10.7)

where

γ = α1 + α2

P =
α1R1 + α2R2

γ

Hence, the product can be viewed as a Gaussian centered at P with an exponent of γ
and a constant factor dependent only on the relative positions of R1 and R2. The constant
factor accounts for the overlap between the original Gaussian. Note that notations of
γ and P are also extensively used in literature and computer codes for handling such
integrals. This is concept can be graphically shown below in Fig. 10.3.

g1(r)

R1

g2(r)

R2

gp(r)

P

Figure 10.3: Schematic illustration of two Gaussian products.

10.4.3 Inverse R integral and the Boys Function

Following the definition of P and γ in eq. 10.7, another common integral is∫
e−γ|r−P|2

|r−RA|
d3r (10.8)

To simplify the integral, shift the coordinate system so that the Gaussian center P
becomes the origin:

r′ = r−P.

In this new coordinate system

|r−P|2 = |r′|2, |r−RA| = |r′ − (RA −P)| = |r′ −R′
A|

The integral becomes: ∫
e−γ|r′|2

|r′ −R′
A|
d3r′.

This integral is a standard form in quantum chemistry and can be evaluated analyti-
cally using the Boys function. The result is:∫

e−γ|r′|2

|r′ −R′
A|
d3r′ =

2π

γ
erf (
√
γ|R′

A|) e−γ|R′
A|2 .

118 Atomistic Simulation in Materials Modeling

Substitute R′
A = RA −P and γ = α1 + α2. The full integral becomes:

I = e−
α1α2

γ
|R1−R2|2 · 2π

γ
erf (
√
γ|RA −P|) e−γ|RA−P|2 . (10.9)

The general form of Boys function is

Fn(T) =

∫ 1

0

x2ne−Tx2

dx,

When n = 0

F0(T) =

√
π

2

erf(
√
T)√
T

. (10.10)

where
T = γ|P−RA|2.

10.4.4 Two-electron Integral

Finally, one needs to deal with the so called two-electron integral in order to compute
the Hartree potential (i.e., the classical Coulomb interactions between electrons),

Jik,jl =

∫∫
gi(r1;αi,Ri)gk(r2;αk,Rk)gj(r1;αj,Rj)gl(r2;αl,Rl)

|r1 − r2|
d3r1 d

3r2.

This integral involves four Gaussians over the r1 and r2 space.
Using the Gaussian product theorem, we can write it as the two new Gaussians gp

and gq.

gi(αi,Ri)gk(αk,Rk) = gP (γp,Rp)e
−αiαk

γp
|Ri−Rk|2

gj(αj,Rj)gl(αl,Rl) = gQ(γq,Rq)e
−αjαl

γq
|Rj−Rl|2

where,

Rp =
αiRi + αkRk

αiαk

, γp = αi + αk,

Rq =
αjRj + αlRl

αjαl

, γq = αj + αl

Let us denote the following factor M that is independent of r1 and r2,

M = e
−αiαk

γp
|Ri−Rk|2e

−αjαl
γq

|Rj−Rl|2

The integral becomes

Jik,jl =M
∫∫

e−γp|r1−Rp|2e−γq |r2−Rq |2

|r1 − r2|
d3r1d

3r2

Obviously, gp and gq can be merged with another Gaussian, and then we can solve
the inverse-R integral again. So the final expression becomes

Jik,jl =M 2π5/2

γpγq(γp + γq)1/2
F0

(
γpγq
γp + γq

|Rp −Rq|2
)

(10.11)

These analytical results will be used heavily in the subsequent integral calculation,
thus making GTOs computationally feasible and attractive.

CHAPTER 10. EFFICIENT DFT VIA THE LOCALIZED BASIS SET 119

10.5. Solving the Hydrogen Molecule with STO-3G

To illustrate the power of the basis set, let us revisit the problem of H2 molecule with
the use of STO-3G basis set as follows.

10.5.1 STO-3G basis for a H2 molecule

For each hydrogen atom, the STO-3G basis set provides a single basis function to rep-
resent the 1s orbital. For each 1s orbital, STO-3G approximates the orbital as a com-
bination of three Gaussian functions. This means that for the entire H2 molecule, we
have two basis functions (ϕ1 for the 1st hydrogen and ϕ2 for the 2nd hydrogen), each
represented by three Gaussian functions. The basis functions are centered on the nuclei
of the hydrogen atoms, which are located at positions R1 and R2.

In the STO-3G basis, we first express ϕ1 and ϕ2 as Gaussian expansions: Each STO
basis function in STO-3G is represented by three Gaussian primitives:

ϕ1(r) =
3∑

n=1

bn|r−R1|n−1e−αk|r−R1|2 (10.12)

ϕ2(r) =
3∑

n=1

bn|r−R2|n−1e−αk|r−R2|2 (10.13)

To solve for the molecular orbitals of H2, we form a linear combination of the two
atomic basis functions:

ψk =
2∑

i=1

cikϕi (10.14)

By solving the electronic Schrödinger equation on this basis, we compute the coeffi-
cients C (cik), which describe the molecular orbitals as combinations of ϕ1 and ϕ2.

10.5.2 Density Matrix and Electron Density

To compute the electron density ρ(r) from the STO-3G basis set, one first obtains the
density matrix D, which is defined in terms of these coefficients and gives the electron
density in the basis of atomic orbitals. Each elementDij of the density matrix is computed
as:

Dij =
∑
k

fk cik c
∗
jk (10.15)

where fk is the occupation number (usually 1 for occupied orbitals and 0 for unoccupied
ones in the Kohn–Sham approach). D has the same dimension of the coefficient matrix
C.

The electron density ρ(r) is then a weighted sum of the products of basis functions,
where the weights are given by the elements of the density matrix D:

ρ(r) =
∑
i,j

Dijϕi(r)ϕj(r) (10.16)

For an initial guess of H2, we can assume that D is an identity matrix.

120 Atomistic Simulation in Materials Modeling

10.5.3 Overlap Matrix

The atomic orbitals (especially when approximated by Gaussian functions) are not gener-
ally orthogonal to each other. For two Gaussian functions centered at different positions
Ri and Rj, the overlap integral S is given by:

S(gik, gjl) =

∫
gik(r)gjl(r)d

3r

Combining eq. 10.5 and eq. 10.7, the integral can be analytically computed as:

S(gik, gjl) = bikbjl

(
2
√
αikαjl

αik + αjl

)3/2

e
−

αikαjl
αik+αjl

|Ri−Rj |2
(10.17)

Here, αik and αjl are the exponents of the Gaussian functions gik and gjl.

10.5.4 Kinetic Energy

For a system consisting of N atomic orbitals, we expect to solve a N × N Hamiltonian
matrix. For the case of H2, this should result in a 2× 2 square matrix. We first consider
the kinetic energy T on the basis of the chosen atomic orbitals. For a basis function pair
ϕi and ϕj, the kinetic energy matrix element in the atomic unit is given by:

Tij = −1

2

∫
ϕi(r)∇2ϕj(r) dr

To compute this, one needs to calculate a set of integrals like

T (gik, gjl) =

∫
gik(r)∇2gjl(r)dr

The Laplacian of a Gaussian function yields another Gaussian:

∇2
(
e−αr2

)
= (4α2r2 − 2α)e−αr2

Hence, we expect to arrive an analytic solution similar to the overlap integral S.

T (gik, gjl) = −1

2

∫
bike

−αik|r−Ri|2
(
4α2

jl|r−Rj|2 − 2αjl

)
bjle

−αjl|r−Rj |2 dr (10.18)

=
αikαjl

αik + αjl

(
3− 2αikαjl

αik + αjl

|Ri −Rj|2
)
S(gik, gjl)

Finally, the total is the sum of each combination of primitives:

Tij =
3∑

k=1

3∑
l=1

dikdjlT (gik, gjl) (10.19)

CHAPTER 10. EFFICIENT DFT VIA THE LOCALIZED BASIS SET 121

10.5.5 External Potential

For the H2 molecule, Vexternal(r) at any point r due to nuclei at R1 and R2 would be:

Vexternal(r) = − 1

|r−R1|
− 1

|r−R2|
On the basis set space, this potential needs to be evaluated by

⟨ϕi|Vexternal|ϕj⟩ =
3∑

k=1

3∑
l=1

dikdjl⟨gik|Vexternal|gjl⟩ (10.20)

For each pair Gaussian integral,

⟨gik|Vexternal(r)|gjl⟩ =

∫
gik(r)Vexternal(r)gjl(r) d

3r

Thus, the problem reduces to evaluating the electron-nuclear attraction integral for
each nucleus:

Inuclear =
2∑

m=1

∫
gik(r)gjl(r)

|r−Rm|
d3r

Using eq. 10.7, we can transform gikgjl to a new Gaussian centered at e−γ|r−P|2 ,

Inuclear, m =

∫
e−γ|r−P|2 1

|r−Rm|
d3r,

The final expression is

Vexternal(gik, gjl) =
2∑

m=1

−2π

γ
e−

αikαjl
γ

|Ri−Rj |2F0

(
γ|RP −Rm|2

)
(10.21)

10.5.6 Hartree Potential

The Hartree potential matrix on the basis functions can be expressed as

VHartree(gik, gjl) =
∑
k,l

DklJij,kl.

For each ij component, it requires solving the following integral

Jij,kl =

∫∫
ϕi(r1)ϕk(r1)ϕj(r2)ϕl(r2)

|r1 − r2|
d3r1 d

3r2.

Using eq. 10.11, we get the expression as

Jij,kl =
∑
p,q,r,s

bipbjqbkrbls
(2π)5/2 exp(T1)

γ1γ2
√
γ1 + γ2

F0(T2). (10.22)

where:

γ1 = αip + αkr → P1 =
αipRip + αkrRkr

γ1

Prefactor−−−−−−→ T1 = −αipαkr

γ1
|Rip −Rkr|2 → exp(T1)

γ2 = αjq + αls → P2 =
αjqRjq + αlsRls

γ2

Boys Func.−−−−−−→ T2 =
γ1γ2
γ1 + γ2

|P1 −P2|2 → F0(T2).

122 Atomistic Simulation in Materials Modeling

10.5.7 XC potential

To evaluate VXC matrix, we need to return to real space to compute VXC(r) from the
basis as follows:

VXC[i, j] =

∫
ϕi(r)VXC(r)ϕj(r)d

3r

We still assume a LDA exchange functional as used in the previous chapter,

VXC(r) = −3ρ(r)

π

1/3

This integral represents the contribution of the XC potential in the (i, j)-th element of
the matrix. For efficiency, it’s typical to use numerical quadrature or Gaussian quadrature
methods if the basis functions are Gaussian.

This integral is challenging to evaluate analytically. However, numerical techniques
can be applied. One can sample points rp and weights wp in real space, then approximate
the integral as a weighted sum:

VXC(gik, gjl) ≈
∑
p

wpϕi(rp)
−3ρ(rp)

π

1/3

ϕj(rp) (10.23)

10.5.8 Orthogonalization and SCF

In a self-consistent field (SCF) calculation for density functional theory (DFT), the molec-
ular orbital coefficients (cmatrix) are obtained by solving the Kohn-Sham equations. These
equations involve constructing and diagonalizing the Hamiltonian matrix H, which is de-
fined as:

H = T + Vexternal + VHartree + VXC (10.24)

To ensure an orthogonal basis, the overlap matrix S between basis functions is used
to transform the H matrix.

Hc = ϵSc

To solve this generalized eigenvalue problem, the basis functions are orthogonalized
using a transformation involving the overlap integral S. Specifically, the overlap matrix
is diagonalized, and a transformation matrix X is applied:

X = S−1/2 (10.25)

The Hamiltonian is then transformed into an orthogonalized basis:

H̃ = X†HX, S̃ = X†SX = I (10.26)

The eigenvalue problem is now simplified to:

H̃c = ϵc (10.27)

This ensures that the molecular orbitals obtained are orthogonal. Solving the eigen-
value problem will give both the eigenvalues (energies) and eigenvectors (coefficients) of
the molecular orbitals. The coefficients can be used to recompute density matrix (eq.

CHAPTER 10. EFFICIENT DFT VIA THE LOCALIZED BASIS SET 123

10.15), electron density (eq. 10.16, kinetic energy (eq. 10.19), external potential (eq.
10.20), Hartree potential (eq. 10.22) and XC potential (eq. 10.23) iteratively until it
reaches a convergence.

Algorithm 3 DFT-SCF Algorithm using STO-3G

1: Step 1: Initial Guess. Start with an initial guess of D and the given ϕi.
2: repeat
3: Step 2: Construct Hamiltonian.

• Evaluate T , Vexternal, VH , and VXC using the current ρ(r).

• Compute H = T + Vexternal + VH + VXC .

4: Step 3: Solve the Kohn-Sham Equations.

• Diagonalize H (after orthogonalization with S).

• Obtain molecular orbital coefficients c and eigenvalues ϵ.

5: Step 4: Recompute D and ρ(r).
6: Step 5: Update VH and VXC.
7: Step 6: Check Convergence.

• Evaluate the energy: Etotal = Ekinetic + ENN + EHartree + EXC

• Check if the change in Etotal or ρ(r) is below a predefined threshold.

8: until Convergence is achieved.

10.6. PySCF Exercise in simulating H2

There are many packages available for performing DFT simulations. The PySCF pack-
age is a particularly useful tool to implement such calculations due to its flexibility and
Python-based interface. PySCF is a powerful computational chemistry library designed
for quantum chemistry and materials science, providing efficient tools for ab initio cal-
culations, including Hartree-Fock, post-Hartree-Fock, and DFT methods. Below is an
example to simulate H2 based on PySCF.

1 from pyscf import gto , dft

2 import numpy as np

3

4 # Calculation setup

5 mol = gto.Mole()

6 mol.atom = ’H 0 0 0; H 0 0 0.74’ # Create H2

7 mol.basis = ’sto -3g’ # Define the basis

8 mol.build()

9 mf = dft.RKS(mol) # Setup DFT

10 mf.xc = ’lda’ # Set up XC functional

11 mf.kernel () # Execute calculation

12

13 # Integrals from the initial guess of density matrix

14 dm = np.eye (2)

15 print("\nOverlap\n", mf.get_ovlp ())

16 print("\nV_kinetic\n", mf.mol.intor("int1e_kin"))

17 print("\nExternal\n", mf.mol.intor("int1e_nuc"))

18 print("\nV_Hartree\n", mf.get_j(mol , dm))

19 print("\nV_XC\n", mf.get_veff(mol , dm) - mf.get_j(mol , dm))

124 Atomistic Simulation in Materials Modeling

20 #print ("hcore\n", mf.get_hcore ())

21 #print ("V_eff\n", mf.get_veff(mol , dm))

22

23 # XC details regarding grid points and weights

24 #coords = mf.grids.coords

25 #weights = mf.grids.weights

Compared to other languages, one important advantage of Python is that one can
conveniently output the intermediate variables. For example, the above script computes
various integral terms related to the molecular Hamiltonian, such as overlap, kinetic
energy, nuclear attraction, Hartree, and exchange-correlation potentials.

1 converged SCF energy = -1.02500812637085

2

3 Overlap

4 [[1. 0.65987312]

5 [0.65987312 1.]]

6

7 V_kinetic

8 [[0.76003188 0.23696027]

9 [0.23696027 0.76003188]]

10

11 External

12 [[-1.88099134 -1.19633604]

13 [-1.19633604 -1.88099134]]

14

15 V_Hartree

16 [[1.34460083 0.88918225]

17 [0.88918225 1.34460083]]

18

19 V_XC

20 [[-0.39170033 -0.25292459]

21 [-0.25292459 -0.39170033]]

These values can be useful understand the overall structure of each potential term
and the simulation process. In addition, we will use these values as the reference to check
our own Python code implementation in the following section. For different kinds of
calculation setup and data analysis in using PySCF, please refer to its online tutorials.

10.7. Python Code Implementation from the Scratch

While most researchers mostly rely on the existing package to perform electronic structure
calculations for realistic systems, it remains tremendously valuable to implement a small
piece of code by hand if one aims to gain more first hand experiences. In the following,
we will attempt to set up a Python script for this chapter.

10.7.1 Initial Planning

For DFT calculations with local basis sets, the coding requirements are significantly more
complex than any other codes we have discussed thus far. To address this complexity, it
is crucial to adopt a structured approach to manage a larger and more intricate coding
project effectively.

First, a logical starting point is to modularize the code by separating the handling of
GTOs and their associated integrals into distinct modules. This separation is especially

CHAPTER 10. EFFICIENT DFT VIA THE LOCALIZED BASIS SET 125

useful because these calculations are mathematically intensive and require a clean and
reusable design. Within Python’s framework, such objectives can be elegantly achieved
using classes. In the context of this discussion, a GTO Class to manage the construc-
tion of Gaussian basis functions, normalization, and various integral calculations (e.g.,
overlap, kinetic, and nuclear attraction integrals) would be desirable. By encapsulating
these functionalities, we can create a reusable and modular design for the mathematical
backbone of the DFT code. If the goal is to handle various types of molecules as input, it
is also beneficial to design a separate Molecule class. This class can manage molecular
data such as atomic coordinates, atomic numbers, and connectivity, providing a clean
interface for interacting with different molecular systems.

Second, careful planning is necessary to validate each numerical routine and ensure
that the code produces the desired results for a few well-known systems. Outputs from
established libraries like PySCF can serve as excellent benchmarks for this purpose, helping
to verify the correctness and accuracy of the implementation.

Third, sometimes efficiency matters. Python, like many other languages, cannot run
nested loops efficiently. It is recommended to first write the plain version of code, and
then vectorize if needed.

Finally, it is likely that many code components will need to be written in a way
that supports extensibility and modularity. This approach will not only facilitate debug-
ging and testing but also make the codebase more adaptable to future enhancements or
changes.

10.7.2 The GTO class

To start, we first write a GTO class to handle Gaussian basis functions and some relatively
easy integral calculations.

1 import numpy as np

2 import scipy.special as sp

3

4 def boys_function(T, threshold =1e-4):

5 """

6 Compute the Boys function F_0(T) for given values of T.

7

8 Args:

9 T (np.ndarray): Input parameter T (non -negative).

10

11 Returns:

12 np.ndarray: Boys function F_0(T).

13 """

14 F0 = np.zeros_like(T)

15

16 # For small T, use Taylor expansion

17 st = T < threshold

18 if np.any(st):

19 t_ = T[st]

20 F0[st] = 1 - t / 3 + t**2 / 10 - t**3 / 42 + t**4 / 108

21

22 # For larger T, use the error function

23 lt = ~small_t

24 if np.any(lt):

25 t = T[lt]

26 F0[lt] = 0.5 * np.sqrt(np.pi / t) * sf.erf(np.sqrt(t))

126 Atomistic Simulation in Materials Modeling

27

28 return F0

29

30 class GTO:

31 """

32 Gaussian -Type Orbital (GTO) Class

33 Handles GTO basis sets generation and integrals.

34 """

35

36 def __init__(self , alpha , coeff , center):

37 """

38 Initialize a GTO.

39

40 Args:

41 alpha (list): Exponents of the Gaussian primitives.

42 coeff (list): Coefficients of the Gaussian primitives.

43 center (array -like): Coordinates of the GTO center.

44 """

45 self.alpha = np.array(alpha)

46 self.coeff = np.array(coeff)

47 self.center = np.array(center)

48 self.norms = self.compute_norms ()

49

50 def compute_norms(self):

51 """

52 Compute normalization constants for the Gaussian primitives.

53

54 Returns:

55 List of normalization constants.

56 """

57 norm_constants = []

58 for alpha in self.alpha:

59 N = (2 * alpha / np.pi) ** (3 / 4)

60 norm_constants.append(N)

61 return np.array(norm_constants)

62

63 def evaluate(self , r):

64 """

65 Evaluate the GTO at a given position r.

66

67 Args:

68 r (array -like): Position where the GTO is evaluated.

69

70 Returns:

71 float: Value of the GTO at r.

72 """

73 r = np.array(r)

74 r_diff = np.linalg.norm(r - self.center)

75 value = 0.0

76 for c, a, norm in zip(self.coeff , self.alpha , self.norms):

77 value += c * norm * np.exp(-a * r_diff **2)

78 return value

79

80 def overlap_integral(self , g2 , return_matrix=False):

81 """

82 Compute the overlap integral between this and another GTO.

83

84 Args:

CHAPTER 10. EFFICIENT DFT VIA THE LOCALIZED BASIS SET 127

85 g2 (GTO): Another GTO object.

86 return_matrix (bool): return matrix for kinetic integral

87

88 Returns:

89 float: Overlap integral.

90 """

91 g1 = self

92 p = g1.alpha[:, None] + g2.alpha[None , :]

93 q = g1.alpha[:, None] * g2.alpha[None , :]

94 R_diff = np.linalg.norm(g1.center - g2.center)**2

95 coefs = np.outer(g1.coeff , g2.coeff)

96 S = (2 * np.sqrt(q) / p)**(3 / 2) * np.exp(-q/p * R_diff)

97 if return_matrix:

98 return S * coefs

99 else:

100 return np.sum(S * coefs)

101

102 def kinetic_integral(self , g2):

103 """

104 Compute kinetic energy integral between this and another GTO.

105

106 Args:

107 g2 (GTO): Another GTO object.

108

109 Returns:

110 float: Kinetic energy integral.

111 """

112 g1 = self

113 S = self.overlap_integral(g2, return_matrix=True)

114 p = g1.alpha[:, None] + g2.alpha[None , :]

115 q = g1.alpha[:, None] * g2.alpha[None , :] / p

116 R_diff = np.linalg.norm(g1.center - g2.center)**2

117 coef = q * (3 - 2 * q * R_diff)

118 return np.sum(S * coef)

119

120 def external_integral(self , g2 , RA , Z=1.0):

121 """

122 Compute the nuclear attraction integral.

123

124 Args:

125 g2 (GTO): Another GTO object.

126 RA (array -like): Position of the nucleus.

127 Z (float): Nuclear charge.

128

129 Returns:

130 float: Nuclear attraction integral.

131 """

132 g1 = self

133 RA = np.array(RA)

134 R_diff = np.linalg.norm(g1.center - g2.center)

135 p = g1.alpha[:, None] + g2.alpha[None , :]

136 q = g1.alpha[:, None] * g2.alpha[None , :] / p

137

138 # Broadcast verion of new Gaussian centers

139 g1s = g1.alpha[:, None] * g1.center[None , :]

140 g2s = g2.alpha[:, None] * g2.center[None , :]

141 P = (g1s[None , :, :] + g2s[:, None , :]) / p[:, :, None]

142

128 Atomistic Simulation in Materials Modeling

143 # Plain Python implemenation

144 #P = np.zeros([len(g1.alpha), len(g2.alpha), 3])

145 #for i in range(len(g1.alpha)):

146 # for j in range(len(g2.alpha)):

147 # P[i, j, :] = g1.alpha[i] * g1.center

148 # P[i, j, :] += g2.alpha[j] * g2.center

149 # P[i, j, :] /= p[i, j]

150 # P[i, j, :] -= RA

151

152 F0_t = boys_function(p * np.linalg.norm(P - RA , axis=-1)**2)

153 V = 2 * np.pi / p * np.exp(-q * R_diff **2) * F0_t

154 coefs = np.outer(g1.norms * g1.coeff , g2.norms * g2.coeff)

155

156 return -Z * np.sum(V * coefs)

157

158

159 if __name__ == "__main__":

160 gtos = [

161 GTO(alpha =[3.42525091 , 0.62391373 , 0.16885540] ,

162 coeff =[0.15432897 , 0.53532814 , 0.44463454] ,

163 center =[0.0, 0.0, 0.00000000]) ,

164 GTO(alpha =[3.42525091 , 0.62391373 , 0.16885540] ,

165 coeff =[0.15432897 , 0.53532814 , 0.44463454] ,

166 center =[0.0, 0.0, 1.39839733])

167]

168

169 # Compute integrals

170 S = np.zeros ([2, 2])

171 T = np.zeros ([2, 2])

172 V_ext = np.zeros([2, 2])

173 for i in range (2):

174 for j in range (2):

175 S[i, j] = gtos[i]. overlap_integral(gtos[j])

176 T[i, j] = gtos[i]. kinetic_integral(gtos[j])

177 for k in range (2):

178 term = gtos[i]. V_ext_integral(gtos[j], gtos[k]. center)

179 V_ext[i, j] += term

180

181 print(f"Overlap :\n {S}")

182 print(f"Kinetic :\n {T}")

183 print(f"Nuclear :\n {V_ext}")

The GTO class consists the following:

GTO attributes.

• alpha: List of exponents for Gaussian primitives.

• coeff : List of coefficients for the linear combination of these primitives.

• center : The 3D spatial center of the Gaussian orbital.

• norms : Normalization constants for the Gaussian primitives.

CHAPTER 10. EFFICIENT DFT VIA THE LOCALIZED BASIS SET 129

GTO methods.

• compute norms: Calculates normalization constants for each Gaussian.

• evaluate: Evaluates the GTO at a specific spatial point r.

• overlap integral: computes the overlap integral from eq. 10.17

• kinetic integral: computes the kinetic energy integral from eq. 10.19

• external integral: Computes the the external potential from eq. 10.20

In the main routine, we construct two GTO instances use the same parameters for α
and coefficients but are centered at H atom positions in a H2 molecule. Then, we call the
GTO methods to compute S, T , Vexternal and obtain the following results.

1 Overlap:

2 [[0.99999999 0.65987312]

3 [0.65987312 0.99999999]]

4 Kinetic:

5 [[0.76003188 0.23696026]

6 [0.23696026 0.76003188]]

7 Nuclear:

8 [[-1.88099132 -1.19633603]

9 [-1.19633603 -1.88099132]]

Clearly, the results are consistent with the previous PySCF results, thus encouraging
us to continue to build the rest functions. One may also check the commented parts in
external integral method, which shows a thought process regarding how to prototype
the beginning code with nested for loops and then optimize it with the broadcast approach
with the help of Numpy.

10.7.3 Hartree Potential

As discussed in the previous section, the most expensive calculation to compute the
Hartree potential that involves the evaluation of two-electron integrals. Using eq. 10.22,
we created the following two functions.

1 def v_hartree(gtos , density_matrix):

2 """

3 Compute the Hartree potential matrix using the Gaussian basis set.

4

5 Args:

6 gtos (list of GTO): List of Gaussian basis set.

7 density_matrix (np.ndarray): Density matrix (D) of the system.

8

9 Returns:

10 np.ndarray: Hartree potential matrix.

11 """

12 n_basis = len(gtos)

13 V_h = np.zeros((n_basis , n_basis))

14

15 # Compute the Hartree potential matrix

16 for i, g1 in enumerate(gtos):

17 for j, g2 in enumerate(gtos):

18 for k, g3 in enumerate(gtos):

19 for l, g4 in enumerate(gtos):

130 Atomistic Simulation in Materials Modeling

20 # Compute the 2-electron integral

21 integral = compute_J_integral(gtos , i, k, j, l)

22 V_h[i, j] += density_matrix[k, l] * integral

23 return V_h

24

25 def compute_J_integral(basis_set , i, j, k, l, verbose=False):

26 """

27 Compute the Coulomb integral J_{ij ,kl} for the basis set.

28

29 Args:

30 basis_set (list of GTO): List of Gaussian basis functions.

31 i, j, k, l (int): Indices of the basis functions.

32

33 Returns:

34 float: Coulomb integral J_{ij,kl}.

35 """

36 gi , gj = basis_set[i], basis_set[j]

37 gk , gl = basis_set[k], basis_set[l]

38

39 J = 0.0

40 for ci , ai , ni in zip(gi.coeff , gi.alpha , gi.norms):

41 ri = gi.center

42 for ck , ak , nk in zip(gk.coeff , gk.alpha , gk.norms):

43 rk = gk.center

44 for cj , aj , nj in zip(gj.coeff , gj.alpha , gj.norms):

45 rj = gj.center

46 for cl , al , nl in zip(gl.coeff , gl.alpha , gl.norms):

47 rl = gl.center

48 # Compute combined exponents and centers

49 gamma_1 = ai + ak

50 gamma_2 = aj + al

51 c1 = (ai * ri + ak * rk) / gamma_1

52 c2 = (aj * rj + al * rl) / gamma_2

53 RAC = np.linalg.norm(ri - rk) ** 2

54 RBD = np.linalg.norm(rj - rl) ** 2

55 RPQ = np.linalg.norm(c1 - c2) ** 2

56

57 # Contribution to the Coulomb integral

58 prefactor = (

59 ci * ck * cj * cl * ni * nk * nj * nl *

60 (2 * np.pi **2.5) /

61 (gamma_1 * gamma_2 * np.sqrt(gamma_1 + gamma_2))

62)

63 T1 = -ai * ak * RAC / gamma_1

64 T1 -= aj * al * RBD / gamma_2

65 T2 = gamma_1 * gamma_2 * RPQ / (gamma_1 + gamma_2)

66 boys_val = boys_functions(np.array ([T2]))[0]

67

68 J += prefactor * np.exp(exp1 + exp2) * boys_val

69 return J

70

71 dm = np.eye (2)

72 V_H = v_hartree(gtos , dm)

73 print(f"V_H:\n {V_H}")

The corresponding outputs are

1 External:

2 [[1.3446008 0.88918223]

CHAPTER 10. EFFICIENT DFT VIA THE LOCALIZED BASIS SET 131

3 [0.88918223 1.3446008]]

Clearly, both functions require four nested for loops. This is fine for a simple case of
H2 molecule. For more complicated examples, one may need to consider more efficient
code vectorization or the use of more efficient libraries.

10.7.4 LDA Exchange

The last term is to construct the effective potential in DFT is to treat the Exchange
Correlation term. Here we follow eq. 10.23 to complete the following two functions.

1 def lda_exchange_potential(rho):

2 """

3 Compute the LDA exchange potential for a given density rho.

4 """

5 # Avoid division by zero for very small densities

6 rho = np.maximum(rho , 1e-10)

7 V_X = -(3 / np.pi)**(1 / 3) * (rho **(1 / 3))

8 return V_X

9

10 def compute_V_xc(gtos , dm , grid_points , grid_weights):

11 """

12 Compute the LDA XC potential matrix V_XC on the basis set.

13

14 Args:

15 gtos (list of GTO): List of Gaussian basis functions.

16 dm (np.ndarray): Density matrix P_kl.

17 grid_points (np.ndarray): Points for numerical integration.

18 grid_weights (np.ndarray): Weights for numerical integration.

19

20 Returns:

21 np.ndarray: XC potential matrix V_XC.

22 """

23 n_basis = len(gtos)

24 V_XC = np.zeros ((n_basis , n_basis))

25

26 # Loop over grid points

27 for p, w in zip(grid_points , grid_weights):

28 # Compute the electron density at the grid point

29 rho = 0.0

30 phi_kp = gtos[k]. evaluate(p)

31 phi_lp = gtos[l]. evaluate(p)

32 for k in range(n_basis):

33 for l in range(n_basis):

34 rho += dm[k, l] * phi_kp * phi_lp

35

36 # Compute the XC potential at the grid point

37 V_X = lda_exchange_potential(rho)

38

39 # Compute contributions to V_XC matrix elements

40 for i in range(n_basis):

41 for j in range(n_basis):

42 V_XC[i, j] += w * phi_kp * phi_lp * V_X

43

44 return V_XC

45

46 from pyscf import gto

47 from pyscf.dft.gen_grid import Grids

132 Atomistic Simulation in Materials Modeling

48 # Calculation setup

49 mol = gto.Mole()

50 mol.atom = ’H 0 0 0; H 0 0 0.74’

51 mol.build()

52 grids = Grids(mol)

53 grids.build()

54 coords = grids.coords

55 weights = grids.weights

56 dm = np.eye (2)

57 V_XC = compute_V_xc(gtos , dm , coords , weights)

58 print("XC Potential Matrix :\n", V_XC)

Executing it requires the setup of grid coordinates and weights. For convenience, here
we just use the grid scheme from PySCF to test our function. It returns

1 XC Potential Matrix:

2 [[-0.39170032 -0.25292459]

3 [-0.25292459 -0.39170032]]

10.7.5 SCF class

Finally, let us implement the SCF process as follows.

1 def scf(gtos , dm0 , grid_coords , grid_weight , max_iter =100, tol=1e-6):

2 """

3 Main routine to perform self -consistent field (SCF) calculation.

4

5 Args:

6 gtos (list of GTO): List of Gaussian -type orbitals.

7 dm0 (np.ndarray): Initial density matrix.

8 grid_coords (np.ndarray): Grid points for numerical integration

.

9 grid_weights (np.ndarray): Weights for numerical integration.

10 max_iter (int): Maximum number of SCF iterations.

11 tol (float): Convergence threshold.

12

13 Returns:

14 dict: Contains energies , density matrix , and molecular orbitals

.

15 """

16 from scipy.linalg import eigh

17

18 # Initialize density matrix and energies

19 dm = dm0

20 energies = []

21

22 # Precompute electron -independent integrals

23 n_basis = len(gtos)

24 S = np.zeros ([n_basis , n_basis])

25 T = np.zeros ([n_basis , n_basis])

26 V_ext = np.zeros([n_basis , n_basis])

27 for i in range(n_basis):

28 for j in range(n_basis):

29 S[i, j] = gtos[i]. overlap_integral(gtos[j])

30 T[i, j] = gtos[i]. kinetic_integral(gtos[j])

31 for k in range (2):

32 term = gtos[i]. external_integral(gtos[j], gtos[k].

center)

CHAPTER 10. EFFICIENT DFT VIA THE LOCALIZED BASIS SET 133

33 V_ext[i, j] += term

34

35 E_nuc = 1.0 / np.linalg.norm((gtos [0]. center - gtos [1]. center))

36

37 for cycle in range(max_iter):

38 # update T and v_eff

39 V_hartree = compute_v_hartree(gtos , dm)

40 V_xc = compute_v_xc(gtos , dm , grid_coords , grid_weight)

41 V_eff = V_hartree + V_xc

42

43 # update H

44 H = T + V_ext + V_eff

45

46 # solve H

47 mo_energy , mo_coeff = eigh(H, S)

48

49 # Update density matrix

50 dm_new = np.zeros_like(dm)

51 for i in range(n_basis):

52 for j in range(n_basis):

53 for k in range(n_basis):

54 if mo_energy[k] < 0:

55 dm_new[i, j] += mo_coeff[i, k] * mo_coeff[j, k]

56 dm_new *= 2

57

58 # Compute energy components

59 T_energy = np.einsum("ij,ij", dm.real , T)

60 E_ext = np.einsum("ij,ij", dm.real , V_ext)

61 E_hartree = 0.5 * np.einsum("ij,ij", dm.real , V_hartree)

62 E_xc = np.einsum("ij , ij", dm.real , V_xc)

63 E_total = T_energy + E_ext + E_hartree + E_xc + E_nuc

64

65 # Output energy details

66 print(f"Cycle {cycle + 1}:")

67 print(f" Kinetic Energy (T): {T_energy :.6f}")

68 print(f" External Energy (E_ext): {E_ext :.6f}")

69 print(f" Hartree Energy (E_H): {E_hartree :.6f}")

70 print(f" XC Energy (E_XC): {E_xc :.6f}")

71 print(f" Total Energy (E_tot): {E_total :.6f}")

72 print(f" HOMO Energy (KS_energy): {mo_energy.min():.6f}\n")

73

74 # Check for convergence

75 if np.linalg.norm(dm_new - dm) < tol:

76 print(f"SCF converged in {cycle + 1} iterations.")

77 break

78 else:

79 dm = dm_new

80

81 if __name__ == "__main__":

82 from pyscf import gto

83 from pyscf.dft.gen_grid import Grids

84

85 # Calculation setup

86 mol = gto.Mole()

87 mol.atom = "H 0 0 0; H 0 0 0.74" # Create H2

88 mol.build()

89 grids = Grids(mol)

90 grids.build()

134 Atomistic Simulation in Materials Modeling

91 coords = grids.coords

92 weights = grids.weights

93 #print(coords)

94

95 gtos = [

96 GTO(alpha =[3.42525091 , 0.62391373 , 0.16885540] ,

97 coeff =[0.15432897 , 0.53532814 , 0.44463454] ,

98 center =[0.0, 0.0, 0.00000000]) ,

99 GTO(alpha =[3.42525091 , 0.62391373 , 0.16885540] ,

100 coeff =[0.15432897 , 0.53532814 , 0.44463454] ,

101 center =[0.0, 0.0, 1.39839733])

102]

103

104 dm = np.eye (2)

105 results = scf(gtos , dm , coords , weights)

The above SCF function iteratively solves the Kohn-Sham equations to minimize
the total energy of the system and obtain the converged electron density matrix and
energy values. The process begins by initializing the system with an initial guess for
the density matrix (D), followed by the computation of all necessary integrals (overlap,
kinetic, external potential, Hartree, and exchange-correlation). By iteratively refining the
density matrix, the SCF loop converges to a stable solution, returning the final electron
density, molecular orbital energies, and total energy. During each iteration, the energy
components are computed and printed for monitoring.

The following results were obtained by running the SCF function:

1 Cycle 1:

2 Kinetic Energy (T): 1.520064

3 External Energy (E_ext): -3.761983

4 Hartree Energy (E_H): 1.344601

5 XC Energy (E_XC): -0.783401

6 Total Energy (E_tot): -0.965614

7 HOMO Energy (KS_energy): -0.295912

8

9 Cycle 2:

10 Kinetic Energy (T): 1.201287

11 External Energy (E_ext): -3.707907

12 Hartree Energy (E_H): 1.349512

13 XC Energy (E_XC): -0.777340

14 Total Energy (E_tot): -1.219343

15 HOMO Energy (KS_energy): -0.292468

16

17 SCF converged in 2 iterations.

Clearly, the final output energy values are significantly more accurate compared to
results obtained using a numerical grid approach. This is because the use of GTOs
ensures a more compact and efficient representation of the molecular orbitals compared
to the finite-difference grid methods. In addition, the entire calculation completes in just
a few seconds, demonstrating the computational efficiency of using Gaussian basis sets
combined with a self-consistent field method.

10.8. Conclusions

In this chapter, we presented a detailed implementation of DFT using Gaussian-Type
Orbitals (GTOs) as the basis set. The SCF algorithm iteratively solved the Kohn-Sham

CHAPTER 10. EFFICIENT DFT VIA THE LOCALIZED BASIS SET 135

equations, starting with an initial guess for the density matrix and refining it until con-
vergence. Key integrals—including overlap, kinetic, external potential, Hartree, and
exchange-correlation—were thoroughly discussed and numerically implemented within
the Gaussian framework.

Compared to grid-based numerical approaches, the use of GTOs significantly reduced
computational cost while improving accuracy. This efficiency stems from the compact
representation of molecular orbitals and the optimized computation of integrals in the
Gaussian basis. These features underscore the advantages of GTO-based methods for
quantum chemistry simulations.

This implementation serves as a foundational exercise in DFT, providing insights
into the numerical and theoretical aspects of solving the Kohn-Sham equations. It also
paves the way for exploring advanced topics such as higher-level exchange-correlation
functionals (e.g., GGA or hybrid methods), multi-electron systems, and extended systems
like periodic structures. Repeating and building upon this exercise will enable a deeper
understanding of the core principles of DFT and its practical computational framework.

136 Atomistic Simulation in Materials Modeling

11. Electronic Structure of the Peri-
odic System

Having known how to compute the electronic properties of molecule, it is natural to
extend it to handle the crystal. However, it is not straightforward to extend DFT from
molecule to crystals. Unlike molecules, crystals are periodic and extend infinitely. We
need methods that respect this periodicity and allow us to work with finite-sized models.

11.1. The Bloch Theorem

Let’s start with a simplest possible periodic system, i.e., a stacking of the same atoms in
one dimension with a unit distance of a,

unit cell

-3a -2a -a 0 a 2a 3a 4a 5a

· · · · · ·

Figure 11.1: The schematic 1D crystal model with a unit distance of a.

The wavefunction must satisfy the time-independent Schrodinger equation:

Hψ(r) = Eψ(r) (11.1)

Due to the periodic boundary condition, the Hamiltonian is periodic:

H(x+ a) = H(x) (11.2)

So the wave function must be somewhat periodic as well. The immediate solution would
be ψ(x + a) = ψ(x). However, quantum mechanics allows for a more flexible condition.
Instead of requiring the wavefunction to be identical after shifting by a phase angle θ,
quantum mechanics only requires that the probability density |ψ(x)|2 remains periodic,
as this is what directly relates to observable quantities.

|ψ(x+ a)|2 = |eiθψ(x)|2 = |ψ(x)|2 (11.3)

137

138 Atomistic Simulation in Materials Modeling

Similarly, we can vary the length of periods to get

ψ(x+ 2a) = ei2θψ(x),

ψ(x+ 3a) = ei3θψ(x),

...

ψ(x+ na) = einθψ(x).

From these expressions, we can find that the wavefunction satisfy the above periodic
constraints must satisfy the following relation,

ψk(x) = eikxuk(x), (11.4)

where

• k is an index to describe the periodic operations of applying the phase factor.

• eikx is a plane wave factor that describes how the wavefunction changes as you move
through space,

• uk(x) is a function that has the same periodicity as the crystal lattice, meaning
uk(x+ a) = uk(x),

This is called Bloch theorem in solid state physics, which states that for a particle
in a periodic potential, the wavefunction can be expressed as a general wavefunction in
the center unit, and the general wave function multiply a phase factor in the periodic
unit cell.

With this relation, it is not difficult to find that ψk(x+ a) is also related to ψk(x) via
the phase factor eika

ψk(x+ a) = eik(x+a)uk(x+ a) = eikaeikxuk(x) = eikaψk(x) (11.5)

It suggests a picture like the following,

11.2. The Tight Binding Model

11.2.1 Solution of 1D monoatomic crystal

For this 1D model, we may assume that the wavefunction solution is the linear combina-
tion of localized atomic orbitals.

ψk(r) =
∑
i

ciϕ(r −Ri),

CHAPTER 11. ELECTRONIC STRUCTURE OF THE PERIODIC SYSTEM 139

where ci are the coefficients that describes the contribution of the i-th atomic orbital.
Plugging this into eq.11.1 and multiply ϕ∗(r −Rj) on both sides,∑

i

ci

∫
ϕ∗(r −Ri)Hϕ(r −Rj)dr = E

∑
i

ci

∫
ϕ∗(r −Rj)ϕ(r −Ri)dr.

The equation consists of three kinds of integrals

1. ϵ =
∫
ϕ∗(r − Ri)Hϕ(r − Ri)dr as the on-site energy (when i = j, representing the

energy of an electron when it is localized on a single atomic site

2. t =
∫
ϕ∗(r − Rj)Hϕ(r − Ri)dr as the hopping integral (when i ̸= j, representing

the interaction energy between atomic orbitals.

3. S =
∫
ϕ∗(r −Rj)ϕ(r −Ri)dr, representing the overlap between two orbitals.

If we assume that two atomic orbitals are nearly orthogonal, this can be simplified to
a matrix form as follows ∑

j

Hijcj = Eci

And Hij is the matrix element.

Hij =

{
ϵ if i = j,

t if i ̸= j.

For the case of a 1D chain, we further assume that the interaction is only limited to
neighboring atoms. Hence, t is only nonzero for j = i± 1.

Now we plug in the Bloch theorem,

ci+1 = cie
ika, ci−1 = e−ika

The Schrodinger equation becomes,

ϵci + tci+1 + tci−1 = Eci → ϵci + tcie
ika + tcie

−ika = Eci

Canceling the ci,

ϵ+ t(eika + e−ika) = E → ϵ+ 2t cos(ka) = E

This reveals that E and k are related the following dispersion relation

E(k) = ϵ+ 2t cos(ka) (11.6)

Bloch’s theorem states that the wavefunction in a periodic crystal lattice can be
written as:

ψk(r) = eikruk(r) → ψk(r + a) = eik(r+a)uk(r + a)

Using uk(r + a) = uk(r),

ϕk(r + a) = eik(r+a)uk(r) = ei(k+
2π
a
)auk(r) = ϕk+ 2π

a
(r)

The equation suggests that eika represents a phase factor. Similarly, one can find

ϕk(r + na) = eik(r+na)uk(r) = ei(k+n 2π
a
)auk(r) = ϕk+n 2π

a
(r)

140 Atomistic Simulation in Materials Modeling

This suggest that moving n×a length in the R space is equivalent to moving n×(2π/a)
in the k space, both of which simply apply a phase factor of exp(in×a). Correspondingly,
2π/a is the unit length in the k space, we define it as the reciprocal unit length.

G =
2π

a
reciprocal unit length

Hence, the periodicity of the lattice means that the allowed wave vectors k can be
translated by reciprocal lattice vectors G without changing the physical properties of the
system:

E(k) = E(k + nG), n ∈ Z

As a result, any k outside the range −π/a to π/a can be mapped back into this range
by subtracting or adding reciprocal lattice vectors. Thus, the dispersion relation can be
formal written as,

E(k) = ϵ+ 2t cos(ka), k ∈
(
π

a
,−π

a

]
(11.7)

This relation is graphically shown in Fig. 11.2. It suggests that the E reaches the
maximum value ϵ + 2t at k = 0, and the minimum value ϵ − 2t at the edge k = ±π/a.
The periodicity of the cosine function ensures that the dispersion relation E(k) repeats
itself in adjacent Brillouin zones, reflecting the inherent periodicity of the crystal lattice
in reciprocal space.

k

E(k)
−π

a
π
a

ϵ

ϵ+ 2t

ϵ− 2t

Figure 11.2: The E − k relation for the 1D chain model.

This behavior also provides physical insight into the role of the hopping term t, which
is responsible for introducing the dispersion. The width of the dispersion, quantified
as 4t (from ϵ − 2t to ϵ + 2t), is directly determined by the strength of the hopping
interaction. Larger hopping integrals result in broader bands, reflecting a higher degree
of electron delocalization, while smaller hopping terms indicate more localized electrons
and narrower bands. As we will discuss in the later section, this dispersion suggests that
the whole electron would form a series of energy bands in a periodic system.

CHAPTER 11. ELECTRONIC STRUCTURE OF THE PERIODIC SYSTEM 141

11.2.2 Solution of 1D diatomic crystal

To make the model more complex, consider a 1D chain with two alternating atoms per
unit cell. Let these atoms have different on-site energies, ϵA and ϵB , and hopping terms
tAB.

unit cell

-3a -2a -a 0 a 2a 3a 4a 5a

· · · · · ·

Figure 11.3: The schematic 1D diatomic crystal model with a unit distance of 2a.

Using Bloch’s theorem, the wavefunction can be written as:

ψk(r) =
∑
n

[cnAϕA(r −RnA) + cnBϕB(r −RnB)] ,

where cnA and cnB are the coefficients for the atomic orbitals ϕA and ϕB in the n-th
unit cell. Hence, the lattice positions are:

RnA = 2na, RnB = (2n+ 1)a.

Substituting this wavefunction into the Schrödinger equation and applying Bloch’s
theorem:

cn+1,A = cnAe
ik(2a), cn−1,A = cnAe

−ik(2a).

The resulting equations for the coefficients become:

ϵAcnA + tABcnB + tABcnBe
ik(−2a) = EcnA,

ϵBcnB + tABcnA + tABcnAe
ik(2a) = EcnB.

The further simplification leads to

ϵAcnA + tAB(1 + e−2ka)cnB = EcnA,

ϵBcnB + tAB(1 + e2ka)cnA = EcnB.

These equations can be written in matrix form:[
ϵA tAB(1 + e−2ika)

tAB(1 + ei2ka) ϵB

] [
cnA
cnB

]
= E

[
cnA
cnB

]
.

The energy eigenvalues E can be obtained by solving the determinant:

det

[
ϵA − E tAB(1 + e−i2ka)

tAB(1 + ei2ka) ϵB − E

]
= 0.

Expanding the determinant:

(ϵA − E)(ϵB − E)−
[
t2AB(1 + ei2ka + e−i2ka)

]
= 0.

142 Atomistic Simulation in Materials Modeling

Simplifying:

E2 − (ϵA + ϵB)E + ϵAϵB − 2t2AB[1 + cos(2ka)] = 0.

This is a quadratic equation for E, and the solutionss:

E±(k) =
ϵA + ϵB

2
±

√(
ϵA − ϵB

2

)2

+ 2t2AB[1 + cos(2ka)].

Two representative solutions are

E±(0) =
ϵA + ϵB

2
±

√(
ϵA − ϵB

2

)2

+ (2tAB)2, E±(±π/2a) =
ϵA + ϵB

2
±

√(
ϵA − ϵB

2

)2

.

k

E(k)
− π

2a
π
2a

(ϵA + ϵB)/2

Figure 11.4: The E − k relation for the 1D diatomic chain model.

The results are graphically shown in Fig. 11.4, where the two solutions correspond
to the energy bands arising from the diatomic 1D chain model. Considering the general
equation,

ϵAcA + 2tABcB = EcA → cB
cA

= −ϵA − E
2tAB

For an extreme case when ϵA is very close to ϵB, the cB/cA ratio for E± states are

cB
cA

(−) =
ϵA − (ϵA + ϵB)/2

2tAB

≥ 0,
cB
cA

(+) =
ϵA − (ϵA + ϵB)/2− 2tAB

2tAB

≤ 0

Hence, these solutions represent two distinct states,

• In E− state (like ϕA+ϕB), the electron wavefunctions on neighboring atoms interfere
constructively. This means that the probability amplitude of finding an electron
between the atoms is increased, enhancing the bond between them. The bonding
state corresponds to a symmetric combination of atomic orbitals.

CHAPTER 11. ELECTRONIC STRUCTURE OF THE PERIODIC SYSTEM 143

• In E+ state (like ϕA − ϕB), the electron wavefunctions interfere destructively, re-
ducing the probability amplitude between the atoms and weakening the bond. The
antibonding state corresponds to an antisymmetric combination of atomic orbitals.

Unlike the monoatomic chain model, this diatomic model introduces additional com-
plexity due to the alternating atoms, leading to a periodicity of π/a in reciprocal space.
The extrema of the cosine term, cos(2ka), occur at k=0 (maximum) and k = ±π/(2a)
(minimum). These points define the highest and lowest energy states within the respec-
tive bands. Notably, a band gap opens at the edge states (k = ±π/(2a)), reflecting the
energy difference between the bonding and antibonding states at those points. This gap
indicates the presence of a forbidden energy region, a characteristic feature of materials
with alternating atomic sites.

The opening of this gap and the distinct dispersion curves suggest that the system’s
electronic properties are significantly influenced by the alternating atomic potentials.
This provides valuable insight into band formation and energy gaps, which are critical in
understanding semiconductors and insulators.

11.2.3 Remarks on the Tight Binding Model

The tight-binding model is a simple yet powerful approach to describing the electronic
structure of solids. It provides valuable insights into the formation of energy bands, band
gaps, and dispersions, which are essential for understanding the electronic properties of
materials.

Despite its strengths, the tight-binding model has limitations in accuracy. It assumes
a fixed basis set of atomic orbitals and simplifies the calculation of overlap integrals,
neglecting variations in orbital shapes due to bonding or hybridization. Consequently, the
model is less effective in systems where electron-electron interactions, spin-orbit coupling,
or long-range interactions are significant. Nonetheless, its simplicity and utility make it
an essential tool in the study of solid-state physics and materials science.

11.3. The Plane Wave Model

To improve the accuracy of the tight-binding model, we may consider a better choice of
basis set to expand the wavefunction. From Bloch’s Theorem, it is natural to link the
wavefunction with plane waves, as they inherently respect the periodicity of the crystal
lattice.

A plane wave is a mathematical representation of a wave with constant frequency and
wavelength, where the oscillations—whether they pertain to electric or magnetic fields
in classical physics or quantum wavefunctions in solid-state physics—are uniform across
planes perpendicular to the direction of wave propagation. A general plane wave in 3D
traveling in the direction of a wave vector k at time t can be written as:

ψ(r, t) = Aei(k·r−ωt) (11.8)

Hence the 1D version is
ψ(x, t) = Aei(k·x−ωt) (11.9)

The direction of k determines the direction in which the wave propagates. For exam-
ple, if k points along the x-axis, then the wave propagates in that direction. In quantum

144 Atomistic Simulation in Materials Modeling

mechanics, the plane wave represents a delocalized particle, meaning it is spread out
across all space, with no specific location but a definite momentum. If we omit the
impact of time, the plane wave is reduced to

ψ(r, t) = Aeik·r (11.10)

ψ(x, t) = Aeik·x (11.11)

11.3.1 Using Plane Waves as the Basis Set

According to the Bloch’s theorem, we find an expression for ψk(x). To solve it, we still
need to figure out uk(x). Numerically, we use a Fourier series expansion of plane waves
to approximate it.

uk(x) =
∑
n

cne
inGx, where G = 2π/a, n ∈ Z. (11.12)

The choice is based on the fact that uk(x), being periodic with the same period as
the crystal lattice, can be expressed as a sum of plane waves with wavevectors that are
integer multiples of G.

Each plane wave in the expansion of the wavefunction has an associated kinetic energy:

Ekinetic =
ℏ2|G|2

2m

In practical calculations, only plane waves with a kinetic energy below a certain cutoff
Ecut are included. This means that only plane waves satisfying the following conditions
are used in the basis set.

ℏ2∥G∥2

2m
≤ Ecut → ∥Gmax∥2 ≤ 2Ecut (in a.u.) (11.13)

When we use a high kinetic energy cutoff, we’re allowing for more plane waves in
the basis set, which improves the wavefunction’s ability to adapt to rapid changes in
the potential within the unit cell. Plane waves with very higher kinetic energy ignored
because they contribute less to the wavefunction and are computationally more expensive
to include.

11.3.2 The Numerical Solution

Now, to solve the 1D atomic chain model, the Schrödinger equation is:(
− ℏ2

2m

d2

dx2
+ V (x)

)
ψk(x) = Eψk(x) (11.14)

Using Bloch’s form of the wavefunction, substitute ψk(x) = eikxuk(x) into the Schrödinger
equation. We then separates the wavefunction into a part that depends on k and a part
that is periodic. This yields an equation for uk(x):(

− ℏ2

2m

(
d

dx
+ ik

)2

+ V (x)

)
uk(x) = Euk(x)

CHAPTER 11. ELECTRONIC STRUCTURE OF THE PERIODIC SYSTEM 145

Using the plane wave basis set, we break the equation into∑
n

cn

(
ℏ2(k +Gn)2

2m

)
ei(k+Gn)x +

∑
n

cn
∑
l

V (Gm)ei(k+Gn+Gl)x = E
∑
n

cne
i(k+Gn)x,

where VGm are the Fourier components of the potential:

V (x) =
∑
l

V (Gl)e
iGlx.

To find the values of cn, we can match coefficients of each term ei(k+Gn)x on both sides
of the equation. This yields a system of linear equations:(

ℏ2(k +Gn)2

2m
− E

)
cn +

∑
l

V (Gn −Gl)cl = 0.

This equation can be rewritten in matrix form as:

Hc = Ec

where H is a matrix representing the Hamiltonian, c is a vector of the Fourier coefficients
cn, and E is the energy eigenvalue.

Each element Hij of the matrix H is given by:

Hnl =
ℏ2(k +Gn)2

2m
δnl + V (Gn −Gl) (11.15)

Since an infinite number of reciprocal lattice vectors Gn would make this a large
system, one needs to truncate it by considering only a finite number of Gn values. For
example, you might choose n from -N to N . This results in a finite matrix of size
(2N + 1)× (2N + 1).

Each equation in this system corresponds to a different value of n, representing a
different reciprocal lattice vector Gn. Solving this set of equations will give you the
values of cn series and the energy eigenvalues E for each k value. The wavefunciton
ψk(x) can be reconstructed as:

ψk(x) = eikx
∑
n

cne
inGx =

∑
n

cne
i(k+nG)x

For each k -point, solving this eigenvalue problem gives a spectrum of eigenvalues E.
The lowest eigenvalue is typically associated with the first (lowest) energy band, the next
eigenvalue with the second band, and so on. This provides a set of energy bands at each
k-point, showing the band structure.

11.4. Extension to 3D system

For a 3D system, we need to extend the basis set to describe the 3D periodicity. Within
the periodic boundary condition, the repetitive atomic packing is defined as a crystal.
Choosing the smallest unit cell, we first define the lattice vector a1, a2 and a3.

The lattice vector R describes the periodic translation

R = n1a1 + n2a2 + n3a3, ni ∈ Z

146 Atomistic Simulation in Materials Modeling

According to the translation symmetry,

H(r + R) = H(r)

ψk(r) = eik·ruk(r) (11.16)

11.4.1 Reciprocal Lattice in 3D

Similar to the 1D case, we use the reciprocal lattice to describe the periodicity of the
crystal in reciprocal space. So the Fourier series in 3D is

uk(r) =
∑

|G|<Gmax

ck(G)eiG·r (11.17)

The reciprocal lattice is defined by three reciprocal lattice vectors b1, b2, b3, which
are related to the real-space lattice vectors a1, a2, a3 as:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
,

b2 = 2π
a3 × a1

a1 · (a2 × a3)
,

b3 = 2π
a1 × a2

a1 · (a2 × a3)
.

Accordingly, the reciprocal lattice vector G is a linear combination of the reciprocal
basis vectors:

G = m1b1 +m2b2 +m3b3, mi ∈ Z,

where m1, m2, m3 are integers, representing the number of reciprocal lattice transla-
tions along b1, b2, and b3, respectively.

11.4.2 3D Hamiltonian on the Plane Wave Basis

The Hamiltonian matrix in 3D is,

Hnl =
ℏ2(k + Gi)

2

2m
δnl + V (Gn −Gl) (11.18)

Thus, the final expression of wavefunction at k becomes

ψk(r) =
∑

|G|<Gmax

ck(G)ei(k+G)·ruk(r) (11.19)

11.5. Energy Bands and Brillouin Zone

11.5.1 Energy Bands

So far, we have learned that the eigenstates of each electron in the crystal depend on
the wave vector k, which implies that the ground state energy E(k) of each electron

CHAPTER 11. ELECTRONIC STRUCTURE OF THE PERIODIC SYSTEM 147

varies with different k choices. This variation leads to an energy dispersion, which is
fundamentally different from the molecular case. In molecules, two electrons can occupy a
single energy level, constrained by the Pauli Exclusion Principle. In contrast, in a crystal,
electrons occupy energy bands that arise from the periodic potential of the atomic lattice.

At absolute zero Kelvin, the energy bands that are completely filled with electrons
are known as the valence bands, whereas the next higher energy band, which is either
partially filled or completely empty, is called the conduction bands.

Energy

...

...

Band Gap

Valence Bands
Completely Filled

Conduction Bands
Partially Filled or Empty

Figure 11.5: The concepts of valence and conduction bands.

A material’s conductive properties depend on the arrangement of these bands. In
conductors, the valence and conduction bands overlap, or the conduction band is partially
filled. In semiconductors and insulators, a band gap separates the valence and conduction
bands, preventing electron flow at low temperatures.

11.5.2 The Brillouin Zone

Since the eigenvalue depends on the choice of k, how do we select k in the practical
calculation? In a crystal, the wave vector k represents the periodicity of the electron’s
wavefunction, with k values lying in the reciprocal space.

Considering the Schrödinger equation for electrons in a crytal:[
−ℏ2

2m
∇2 + V (r)

]
ψk(r) = Ekψk(r),

The wave vector k appears in ψk(r) only as a phase factor eik·r. Because of the
periodicity of V (r), the solutions Ek and ψk(r) are periodic in k-space, with a periodicity
defined by the reciprocal lattice vectors:

Ek+G = Ek.

Hence, we don’t need to sample all k points. Instead, we mathematically define a
smallest region that

∥k∥ < ∥k + G∥ ∀G ̸= 0,

This is called First Brillouin Zone (FBZ). Below we discuss how to construct FBZ
for a simple cubic structure.

148 Atomistic Simulation in Materials Modeling

The First Brillouin Zone of a Simple Cubic Structure.

In a simple cubic structure with unit length of a, the lattice vectors are:

a1 = ax̂, a2 = aŷ, a3 = aẑ.

The reciprocal lattice is also a simple cubic lattice with lattice constant 2π/a.:

b1 =
2π

a
x̂, b2 =

2π

a
ŷ, b3 =

2π

a
ẑ.

To construct the FBZ, we look for the maximum values around the origin of the
reciprocal lattice. For the SC lattice, the reciprocal lattice points are:

G = hb1 + kb2 + lb3,

The nearest points to the origin are:

±2π

a
x̂, ±2π

a
ŷ, ±2π

a
ẑ.

Next, construct planes that are perpendicular to the vectors connecting the origin
to each nearest reciprocal lattice point. These planes are positioned at the midpoint
between the origin and the reciprocal lattice points.
The planes:

x = ±π
a

(for b1) y = ±π
a

(for b2) z = ±π
a

(for b3).

Hence, the intersection of these planes forms a cube centered at the origin with
side length 2π/a.

−π
a
≤ kx ≤

π

a
, −π

a
≤ ky ≤

π

a
, −π

a
≤ kz ≤

π

a
.

kx

ky

kz

Figure 11.6: The first Brillouin Zone of simple cubic structure.

Since the FBZ contains all unique k-points, computational calculations of properties
like band structures or density of states can be limited to the FBZ, avoiding redundant
evaluations. In addition, the symmetry of the crystal can further reduce the number of
k-points that need to be sampled. In the crystallography book, the high symmetry points
and paths are also commonly used. These information can be found in either database or
literature [17]. Only the irreducible wedge of the FBZ is required for most calculations.

CHAPTER 11. ELECTRONIC STRUCTURE OF THE PERIODIC SYSTEM 149

While it is relatively straightforward to compute the FBZ for simple crystal structures
such as the simple cubic or face-centered cubic lattices, constructing the FBZ for more
complex lattices can be challenging. In such cases, specialized tools and software can
simplify the process. One widely used tool is Seek-Path, available at Materials Cloud
(https://www.materialscloud.org/work/tools/seekpath). This tool provides auto-
matic construction of the FBZ for a given crystal structure. In addition, it generates the
high-symmetry points and paths for band structure calculations, as well as convenient
visualization of the FBZ and the irreducible wedge.

11.5.3 Practical Band Structure Visualization

The concept of the First Brillouin Zone provides a systematic framework for under-
standing and visualizing the band dispersion of electrons in a crystal. In principle, the
electronic band structure is characterized by the energy Ek as a function of the wave
vector k, which exists in the 3D reciprocal space defined by the FBZ. However, directly
visualizing Ek for all k-points in 3D space is impractical due to the complexity of plotting
such a multidimensional dataset.

To address this challenge, a more convenient and widely adopted method is to project
the band dispersion along high-symmetry paths within the FBZ. These paths connect
high-symmetry points (e.g., Γ, X, L, etc.), which are representative of the crystal’s
periodicity and symmetry. By plotting E(k) along these paths, one captures the key
features of the electronic structure, including:

1. whether the material is a metal, semiconductor or insulator.

2. if not a metal, what the band gap is between valence and conduction bands.

3. Curvature of the bands, which reflects the effective mass of electrons.

4. Dispersion characteristics (e.g., narrow or wide bands) indicating the degree of
electron localization or delocalization.

This approach simplifies the visualization of band structures while retaining the es-
sential physics that arise from the periodic potential of the atomic lattice. The resulting
plots not only reveal critical information about a material’s electronic properties but also
provide insights into its conductivity, optical behavior, and response to external fields.

In addition, such a two-dimensional band plot is often coupled with a density of
states (DOS) plot, which provides complementary information about the distribution of
electronic states over energy. The DOS can be considered as a histogram of Ek values,
showing the number of electronic states available at each energy level. Fig. 11.7 shows a
combined plot for Silicon’s band structure and DOS.

11.6. Empirical Pseudopotential Method

To obtain an accurate band structure, Empirical Pseudopotential Method (EPM) is a
widely used approach for calculating the electronic band structure of crystals [18, 19].
It simplifies the problem of solving the Schrödinger equation for electrons in a periodic
potential by replacing the full ionic potential with an effective potential, referred to as the
pseudopotential. This effective potential accounts for the complex interactions between

https://www.materialscloud.org/work/tools/seekpath

150 Atomistic Simulation in Materials Modeling

Home / Apps / Materials Explorer / Si / Si / mp-149

Materials Explorerg 📔 References  Documentation

Energy Above Hull 0.000
eV/atom

Space Group Fd3̅m

Band Gap 0.61 eV

Predicted Formation
Energy

0.000
eV/atom

Magnetic Ordering Non-
magnetic

Total Magnetization 0.00
µB/f.u.

Experimentally
Observed

Yes

Description (Auto-generated)

Si is diamond structured and crystallizes
in the cubic Fd̅3m space group. Si is
bonded to four equivalent Si atoms to
form corner-sharing SiSi₄ tetrahedra. All
Si-Si bond lengths are 2.36 Å.

Crystal Structure

Lattice (Conventional)

a 5.44 Å

b 5.44 Å

c 5.44 Å

α 90.00 º

β 90.00 º

ɣ 90.00 º

Volume 161.32 Å³

Lattice is given in its

crystallographic setting.

Atomic Positions

Wyckoff Element x y z

8a Si 3/4 3/4 1/4

Symmetry

Crystal System Cubic

Lattice System Cubic

Hall Number F 4d 2 3 -1d

International Number 227

Symbol Fd3m̅

Point Group m3̅m

Number of Atoms 8

Density 2.31 g·cm⁻³

Dimensionality 3D

Possible Oxidation
States

Unknown

Properties

Phase Stability Electronic Structure Phonon Spectra Mechanical Heterostructures

Electronic Structure Magnetic Properties Dielectric Constants Charge Density

Electronic Structure 

Data Methods API

Band Gap 0.61 eV

Direct Gap No

Metallic No

CBM (0.41 0.41 0)

VBM (0 0 0)

The input structure for mp-1057384 is primitive but may not exactly match the standard primitive
setting.

The input structure for mp-2250750 is primitive but may not exactly match the standard primitive
setting.

Contributed Data
Contributed computational or experimental data can be uploaded and shared with other users of Materials Project via
the MPContribs platform. Apply here to share your data! All contributed data is credited to the original authors and
includes links to the relevant publications. If you use this contributed data, you are asked to cite the original authors.

Micro contributions

Contribute your own data to this material!

Only properties listed in the menu are supported at the moment. If you want to contribute a new property, please
contact us. We welcome both experimental and computational data, and please make sure to provide the necessary
context and references.

Value Context DOI

Literature References
1 R. Nunez-Gonzalez, A. Posada-Amarillas, D.H. Galvan, and A. Reyes-Serrato. Concentration-dependent study of
electronic and optica properties of c-si and c-si:h. Physica Status Solidi B - Basic Solid State Physics, 248:1712–1717,
2011.

2 D.N. Batchelder and R.O. Simmons. Lattice constants and thermal expansivities of silicon and of calcium fluoride
between 6 and 322 k. Journal of Chemical Physics, 41:2324–2329, 1964.

3 W. Parrish. Results of the i.u.cr precision lattice-parameter project. Acta Crystallographica (1,1948-23,1967),
13:838–850, 1960.

4 P. Debye and P. Scherrer. Interferenzen an regellos orientierten teilchen im roentgenlicht. Physikalische Zeitschrift,
17:277–283, 1916.

5 Kurt Lejaeghere, Veronique Van Speybroeck, Guido Van Oost, and Stefaan Cottenier. Error estimates for solid-state
density-functional theory predictions: an overview by means of the ground-state elemental crystals. Critical Reviews
in Solid State and Materials Sciences, 39:1–24, 2014.

6 H. Kuestner and H. Remy. Struktur des siliziums. Physikalische Zeitschrift, 24:25–29, 1923.

7 W.L. Bond and W. Kaiser. Interstitial versus substitutional oxygen in silicon. Journal of Physics and Chemistry of
Solids, 16:44–45, 1960.

8 D.M. Toebbens, N. Stuesser, K. Knorr, H.M. Mayer, and G. Lampert. E9: the new high-resolution neutron powder
diffractometer at the berlin neutron scattering center. Materials Science Forum, 378:288–293, 2001.

9 M.E. Straumanis and E.Z. Aka. Lattice parameters, coefficients of thermal expansion and atomic weights of purest
silicon and germanium. Journal of Applied Physics, 23:330–334, 1952.

10 M.E. Straumanis, P. Borgeaud, and W.J. James. Perfection of the lattice of dislocation-free silicon, studies by the
lattice-constant and density method. Journal of Applied Physics, 32:1382–1384, 1961.

11 S.-L. Qiu and P.M. Marcus. Structure and stability under pressure of cubic and hexagonal diamond crystals of c, bn
and si from first principles. Journal of Physics: Condensed Matter, 23:215501–1–215501–8, 2011.

12 W.M. Yim and R.J. Paff. The thermal expansion of of al n, sapphire, and silicon. Journal of Applied Physics,
45:1456–1457, 1974.

13 Shaw Nan and Liu Yi-huan. X-ray measurement of the thermal expansion of germanium, silicon, indium antimonide
and gallium arsenenide. Wu Li Hsueh Pao (= Acta Physica Sinica), 20:699–704, 1964.

14 A. Kohno, N. Aomine, Y. Soejima, and A. Okazaki. Anomalous behaviour of silicon single-crystals observed by x-
ray diffraction. Japanese Journal of Applied Physics, Part 1, 33:5073–5077, 1994.

15 C. Yeh, Z.W. Lu, S. Froyen, and A. Zunger. Zinc-blende-wurtzite polytypism in semiconductors. Physical Review,
Serie 3. B - Condensed Matter (18,1978-), 46:10086–10097, 1992.

16 Y. Okada and Y. Tokumaru. Precise determination of lattice parameter and thermal expansion coefficient of silicon
between 300 and 1500 k. Journal of Applied Physics, 56:314–320, 1984.

17 B.N. Dutta. Lattice constants and thermal expansion of silicon up to 900 c. Physica Status Solidi, 2:984–987,
1962.

18 A. Kitano, K. Moriguchi, M. Yonemura, S. Munetoh, A. Shintani, H. Fukuoka, S. Yamanaka, E. Nishibori, M. Takata,
and M. Sakata. Structural properties and thermodynamic stability of ba-doped silicon type-i clathrates synthesized
under high pressure. Physical Review, Serie 3. B - Condensed Matter (18,1978-), 64:0452061–0452069, 2001.

19 C.R. Hubbard, H.E. Swanson, and F.A. Mauer. A silicon powder diffraction standard reference material. Journal of
Applied Crystallography, 8:45–48, 1975.

20 E.R. Jette and F. Foote. Precision determination of lattice constants. Journal of Chemical Physics, 3:605–616,
1935.

21 C. Filippi, D.-J. Singh, and C.J. Umrigar. All-electron local-density and generalized-gradient calculations of the
structural properties of semiconductors. Physical Review, Serie 3. B - Condensed Matter (18,1978-), 50:14947–
14951, 1994.

22 Fang Wu, Dai Jun, Er Jun Kan, and Zhen Yu Li. Density functional predictions of new silicon allotropes: electronic
properties and potential applications to li-battery anode materials. Solid State Communications, 151:1228–1230,
2011.

External Links
Matching Entries from the Inorganic Crystalline Structure Database (ICSD)

181356 60389 150530 53782 426975 53783

29287 51688 52457 43610 182730 652257

652265 659044 67788 652258 60385 29288

43403 60386 191759 60388 76268 652255

94261 52266 41979 181355 181907 60387

More

Related Materials

Data Methods API

HgS
mp-1123

100.00% similar

YN
mp-13099

100.00% similar

AlAs
mp-2172

100.00% similar

InSb
mp-20012

100.00% similar

Data retrieval 0.58s, page generation 0.86s, generated at 2024-12-02 17:12 US/Pacific.

Si
mp-149

TABLE OF CONTENTS

Summary

Crystal Structure

Properties

Contributed Data

Literature References

External Links

More

Related Materials

 Export Materials Details

conventional

Brillouin Zone

Γ X W K Γ L

−6

−4

−2

0

2

4

6

0 1 2

Total DOS
Si

Wave Vector Density of States

E-
E f

er
m

i (
eV

)

Be Aware

See more

See more

See more

See more

See more

See more

See more

See more

PROJECT CONTRIBUTION DATA

GLLB-SC Bandgaps 5054dca ΔE C
y

AUTHORS

I. Castelli, F. Hueser, M. Pandey, H. Li, K. Thygesen, B. Seger, A. Jain, K. Persson, G. Ceder, K. Jacobsen

PROJECT CONTRIBUTION DATA

Electronic Transport Pro… 7ff0b25 task metal ΔE V S PF
y

AUTHORS

F. Ricci, W. Chen, U. Aydemir, G. J. Snyder, G-M. Rignanese, A. Jain, G. Hautier

PROJECT CONTRIBUTION DATA

Phono(3)py Calculations e20d49c imaginary settings
y

AUTHORS

A. Togo

PROJECT CONTRIBUTION DATA

Forbidden Transitions f47fc65 info properties
y

AUTHORS

Rachel Woods-Robinson, Yihuang Xiong, Jimmy-Xuan Shen, Nicholas Winner, Matthew K. Horton, Mark Asta,

PROJECT CONTRIBUTION DATA

Amorphous Diffusivity fef79e2 chemsys temperature properties
y

AUTHORS

Hui Zheng, Eric Sivonxay, Max Gallant, Ziyao Luo, Matthew McDermott, Patrick Huck, Kristin A. Persson

PROJECT CONTRIBUTION DATA

Melting Points using GN… 5606bba MeltingPoint
y

AUTHORS

Q.-J. Hong, S.V. Ushakov, A. van de Walle, A. Navrotsky, M. McDermott

PROJECT CONTRIBUTION DATA

Materials Project Topolog… 3590468 topology dimension multiplicity
y

AUTHORS

François-Xavier Coudert

PROJECT CONTRIBUTIONS DATA

Open Catalyst Project 2903c44 c0b24ac mpid adsorptionEnergy adsorbateSmiles
y

AUTHORS

FAIR / CMU

Property  Context  Value  Unit Reference Contribu…

Bandgap 275K 1.12 eV

Electronic Structure Select... Select...

Scalar value e.g. 300K, DFT e.g. 10.1063/1.4812323 Submit

How to Download How to Cite Calculations

Materials Project

Apps Overview

About

Community

Machine Learning

API

Dashboard

About

News and Updates

People

Partners and Support

How to Cite

Open Source Software

Publications

Press

Terms of Use

MPContribs Terms of
Use

Community

Seminar

Documentation

Forum The Materials Project is powered by open-source software. Our data is licensed under a
Creative Commons Attribution 4.0 International License. Contributed data is owned by

the respective contributors.
The current website version is b2f327c9 and database version is v2023.11.1.

Si

— EXPLORE AND SEARCH

— ANALYSIS TOOLS

— CHARACTERIZATION

— CONTRIBUTED DATA





u

g

j

j

f

C

A

D

c

d

b

h

o

n

y

References

To cite this app, include all of the references
listed below

Commentary: The Materials Project: A
materials genome approach to
accelerating materials innovation

Anubhav Jain, Shyue Ping Ong, Geoffroy
Hautier, Wei Chen, William Davidson Richards,
Stephen Dacek, Shreyas Cholia, Dan Gunter,
David Skinner, Gerbrand Ceder, and Kristin A.
Persson

APL Materials, 2013 BibTeX

High-throughput screening of inorganic
compounds for the discovery of novel
dielectric and optical materials

Ioannis Petousis, David Mrdjenovich, Eric
Ballouz, Miao Liu, Donald Winston, Wei Chen,
Tanja Graf, Thomas D. Schladt, Kristin A.
Persson, Fritz B. Prinz

Scientific Data, 2017 BibTeX

An improved symmetry-based approach
to reciprocal space path selection in band
structure calculations

Jason M. Munro, Katherine Latimer, Matthew K.
Horton, Shyam Dwaraknath, Kristin A. Persson

npj Computational Materials, 2020

BibTeX

Electrochemical Stability of Metastable
Materials

Arunima K. Singh, Lan Zhou, Aniketa Shinde,
Santosh K. Suram, Joseph H. Montoya, Donald
Winston, John M. Gregoire, Kristin A. Persson

Chemistry of Materials, 2017 BibTeX

Efficient Pourbaix diagrams of many-
element compounds

Anjli M. Patel, Jens K. Nørskov, Kristin A.
Persson, Joseph H. Montoya

Physical Chemistry Chemical Physics, 2019

BibTeX

Prediction of solid-aqueous equilibria:
Scheme to combine first-principles
calculations of solids with experimental
aqueous states

Kristin A. Persson, Bryn Waldwick, Predrag
Lazic, Gerbrand Ceder

Physical Review B, 2012 BibTeX

High-throughput prediction of the
ground-state collinear magnetic order of
inorganic materials using Density
Functional Theory

Matthew Kristofer Horton, Joseph Harold
Montoya, Miao Liu, Kristin Aslaug Persson

npj Computational Materials, 2019

BibTeX

Computational Approach for Epitaxial
Polymorph Stabilization through
Substrate Selection

Hong Ding, Shyam S. Dwaraknath, Lauren
Garten, Paul Ndione, David Ginley, Kristin A.
Persson

ACS Applied Materials & Interfaces, 2016

BibTeX

Formation enthalpies by mixing GGA and
GGA + U calculations

Anubhav Jain, Geoffroy Hautier, Shyue Ping
Ong, Charles J. Moore, Christopher C. Fischer,
Kristin A. Persson, Gerbrand Ceder

Physical Review B, 2011 BibTeX

A Framework for Quantifying Uncertainty
in DFT Energy Corrections

Amanda Wang, Ryan Kingsbury, Matthew
McDermott, Matthew Horton, Anubhav Jain,
Shyue Ping Ong, Shyam Dwaraknath, Kristin
Persson

2021 BibTeX

Thermodynamic limit for synthesis of
metastable inorganic materials

Muratahan Aykol, Shyam S. Dwaraknath,
Wenhao Sun, Kristin A. Persson

Science Advances, 2018 BibTeX

Surface energies of elemental crystals

Richard Tran, Zihan Xu, Balachandran
Radhakrishnan, Donald Winston, Wenhao Sun,
Kristin A. Persson, Shyue Ping Ong

Scientific Data, 2016 BibTeX

Charting the complete elastic properties
of inorganic crystalline compounds

Maarten de Jong, Wei Chen, Thomas Angsten,
Anubhav Jain, Randy Notestine, Anthony
Gamst, Marcel Sluiter, Chaitanya Krishna Ande,
Sybrand van der Zwaag, Jose J Plata, Cormac
Toher, Stefano Curtarolo, Gerbrand Ceder,
Kristin A. Persson, Mark Asta

Scientific Data, 2015 BibTeX

A database to enable discovery and
design of piezoelectric materials

Maarten de Jong, Wei Chen, Henry Geerlings,
Mark Asta, Kristin Aslaug Persson

Scientific Data, 2015 BibTeX

Evaluation of thermodynamic equations of
state across chemistry and structure in
the materials project

Katherine Latimer, Shyam Dwaraknath, Kiran
Mathew, Donald Winston, Kristin A. Persson

npj Computational Materials, 2018

BibTeX

Grain boundary properties of elemental
metals

Hui Zheng, Xiang-Guo Li, Richard Tran, Chi
Chen, Matthew Horton, Donald Winston, Kristin
Aslaug Persson, Shyue Ping Ong

Acta Materialia, 2019 BibTeX

Documentation

Go to Materials Explorer documentation page.

About

Search for materials information by chemistry,
composition, or property.

The Materials Project Apps About Community ML API  🔔
0

Figure 11.7: An example of band structure of silicon with the combined DOS plot
(downloaded from https://next-gen.materialsproject.org/materials/mp-149).

valence electrons and the ion cores, allowing the computational focus to be directed
primarily on valence electrons while avoiding the need to explicitly treat core electrons.

r

V (r)

VrealVpseudo

Core Region Valence Region

rc

−1
r

Figure 11.8: The idea of pseudopotential.

The Hamiltonian for an electron in the crystal consists of a kinetic-energy potential
which depends on position. (

p2

2m
+ V (r)

)
ϕk(r) = Ekϕk(r)

Here V (r) is a pseudopotential, which depends on only valence electrons. Hence V (r)
are only small perturbations. Correspondingly, the solution ϕk can expanded into a sum
of plane waves.

|ϕk⟩ =
∑
G

αG exp(ik ·G) =
∑
G

αG|k + G⟩

where α are the coefficients and |k + G⟩ denote the planewaves. The coefficients can
be determined from

https://next-gen.materialsproject.org/materials/mp-149

CHAPTER 11. ELECTRONIC STRUCTURE OF THE PERIODIC SYSTEM 151

det

∣∣∣∣[ℏ2k2

2m
− Ek

]
δk,k+G + ⟨k|V (r)|k + G⟩

∣∣∣∣ = 0

where

⟨k|V (r)|k + G⟩ =

[
1

N

∑
j

e−iG·R
]

1

Ω

∫
V (r)e−iG·rdr

Hence, this includes two terms. The first term is called form factor Vf

V (G) =
1

Ω

∫
V (r)e−iG·rdr (11.20)

and the 2nd term is called structure factor (S)

S(G) =
1

N

N∑
j=1

exp(−iG ·Rj) (11.21)

The pseudopotential V (r) can be expressed in terms of the structure factor and the
form factors by

V (r) =
∑
G

Vf (G)S(G)e−iG·r (11.22)

Following the 1D case, the Schrodinger equation for the given k has a matrix form
below

Hmn(k) =
ℏ2

2me

|k + Gm|2δmn + Vf (Gm −Gn)S(Gm −Gn) (11.23)

Clearly, this matrix has two features.

• For the diagonal part (when m = n) only depends on the k, G, Vf (000), S(000)
values.

• When m ̸= n, the kinetic energy can be neglected, However, one needs to know the
series of Vf (hkl) and S(hkl) values.

Fortunately, S(hkl) directly depends on crystal symmetry and can be zero for many cases,
which can effectively eliminate many Hmn elements and thus simplify the computation
of eigenvalue problems. Below we will explain how to derive a simplified model on high
symmetric diamond crystal.

11.6.1 Structure Factor of Representative Structures

Before proceeding to the analysis of diamond structure, let us first do a few calculations
for two representative high symmetry structures.

152 Atomistic Simulation in Materials Modeling

Body-centered cubic (BCC)

For the the body-centered cubic Bravais lattice, we have two points (0, 0, 0) and (1/2,
1/2, 1/2) in the unit cell. Hence

S(hkl) = e−i(0+0+0) + e−iπ(h+k+l).

Clearly, it follows

Shkl =

{
2, h+ k + l = even

0, h+ k + l = odd

Face-centered cubic (FCC)

For the the body-centered cubic Bravais lattice, we four points (0, 0, 0), (1/2, 1/2, 0),
(1/2, 0, 1/2), (0, 1/2, 1/2) in the unit cell. Hence,

S(hkl) = e−i(0+0+0) + e−iπ(h+k) + e−iπ(k+l) + e−i(h+l)).

Clearly, it follows

S(hkl) =

{
4, h, k, l are all odd or even

0, otherwise

Using these calculation, we can also immediately find that translation ****.

11.6.2 Application to the Diamond Crystal

For the case of diamond structure, it can be counted as two FCC sublattice, including
(0, 0, 0), (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2), as well as the uniform (1/4, 1/4, 1/4)
shift, resulting another 4 atoms at (1/4, 1/4, 1/4), (3/4, 3/4, 1/4), (3/4, 1/4, 3/4) and
(1/4, 3/4, 3/4).

Figure 11.9: The diamond lattice with two atoms at (0, 0, 0) and (1/4, 1/4, 1/4). Note
that other atoms are intentionally removed for clarity.

For the 1st group of 4 FCC atoms:

S1(hkl) = e−i(0+0+0) + e−iπ(h+k) + e−iπ(k+l) + e−i(h+l).

For the 2nd group of 4 atoms, it can be considered as the original fcc multiply a factor
of e(−iGhkl·[1/4,1/4,1/4]

S2(hkl) = e(−iπ h+k+l
2

)[e−i(0+0+0) + e−iπ(h+k) + e−iπ(k+l) + e−i(h+l)].

CHAPTER 11. ELECTRONIC STRUCTURE OF THE PERIODIC SYSTEM 153

Hence the total is

S(hkl) = S1(hkl) + S2(hkl) = (1 + e(−iπ h+k+l
2

))SFCC.

And it satisfies the following

Shkl =


8, h+ k + l = 4N

4(1 + i), h+ k + l = 2N + 1

0, h+ k + l = 2N + 2

Immediately, we can find the following that the following h21 + k21 + l21 values may lead
to either zero or non-existing S values.

h2 + k2 + l2 = 1 ← S(±1, 0, 0) = 0

h2 + k2 + l2 = 2 ← S(±1,±1, 0) = 0

h2 + k2 + l2 = 4 ← S(±2, 0, 0) = 0

h2 + k2 + l2 = 5 ← S(±2,±1, 0) = 0

h2 + k2 + l2 = 6 ← S(±2,±1,±1) = 0

h2 + k2 + l2 = 7 ← no valid h, k, l

h2 + k2 + l2 = 9 ← S(±3, 0, 0) = 0

h2 + k2 + l2 = 10 ← S(±3,±1, 0) = 0

h2 + k2 + l2 = 12 ← no valid h, k, l

h2 + k2 + l2 = 13 ← S(±3,±2, 0) = 0

h2 + k2 + l2 = 14 ← S(±3,±2,±1) = 0

h2 + k2 + l2 = 15 ← no valid h, k, l

h2 + k2 + l2 = 16 ← S(±4, 0, 0) = 0

h2 + k2 + l2 = 17 ← S(±4,±1, 0) = 0

h2 + k2 + l2 = 18 ← S(±4,±1,±1) = 0

Note that the structure factors are generally complex values and their modulus won’t
change if one applies a uniform shift on the atomic coordinates. So the above (hkl)
can be safely neglected. And the structure factor S(G) is nonzero only for |G|2 =
0, 3, 8, 11, 19, These correspond to

h2 + k2 + l2 = 0 G = (0, 0, 0)

h2 + k2 + l2 = 3 G = (±1,±1,±1)

h2 + k2 + l2 = 8 G = (±2,±2, 0), (±2, 0,±2), (0,±2,±2)

h2 + k2 + l2 = 11 G = (±3,±1,±1), (±1,±3,±1), (±1,±1,±3)

h2 + k2 + l2 = 19 G = (±3,±3,±1), (±3,±1,±3), (±1,±3,±3)

For the remaining nonzero hkl choices, S may take complex values when h+ k + l =
2N + 1 (e.g., S(111)). To get rid of the complex values, we can shift the atoms in the

154 Atomistic Simulation in Materials Modeling

diamond unit cell by (-1/8, -1/8, -1/8). Upon shifting, nonzero S(hkl) values can be
adjusted while maintaining the same modulus, However, zero S(hkl) values remain zero.

For convenience, we choose the center between R1 and R2 as origin, and the coordi-
nates becomes R′

1 = (-1/8, -1/8, -1/8) ×a and R′
2 = (1/8, 1/8, 1/8) ×a.

S(G) = A× SFCC ×
1

2

(
e−iG·R′

1 + e−iG·R′
2

)
= A× SFCC × cos(G ·R′

1)

= A× SFCC × cos[π(h+ k + l)/4])

This formula can ensure that we only need to deal with real valued S(hkl) from now
on.

Further, we enforce that the pseudopotential at the real space will expand spherically,
leading to that Vf (h1, k1, l1) = Vf (h2, k2, l2) when h21 + k21 + l21 = h22 + k22 + l22. As
a result, equivalent reciprocal lattice vectors (e.g., G = (±1,±1,±3)) share the same
potential value, such as V (

√
11). Consequently, only the following potential values need

to be considered: V (0), V (
√

3), V (
√

8), V (
√

11), V (
√

19) . . . are needed to express the
Hamiltonian.

11.6.3 Model Hamiltonian

According to eq. 11.23, the Hamiltonian H is constructed by including contributions
from both the kinetic energy T̂ and the potential energy V̂ . Assuming the use of Np

plane waves within a cutoff defined by Gmax, the resulting Hamiltonian matrix H is of
size Np ×Np, including

• Diagonal Elements (Hmm): These terms are caused by kinetic energy contribution
and offset energy at G = 0, namely ℏ2k/2me + Vf (0)S(0).

• Off-Diagonal Elements (Hmn): These terms arise from the potential energy V (q)
(where q = |Gm −Gn|). If we let Vf (q) include the common factor of A × SFCC,
the expression becomes Vf (q)× cos(π

4
× 1⊤q), where 1⊤q is simply the vector sum.

In practice, V (0) is typically set to zero because it merely shifts the overall energy
levels Ek without affecting the relative band structure.

Next, a higher hkl index should have less contribution and they can be omitted. So
we can truncate the potential energy matrix to include reciprocal lattice vectors satis-
fying h2 + k2 + l2 < 19. As such, only three independent parameters, V (

√
3), V (

√
8),

and V (
√

11) are needed to construct a full H matrix. These values are typically fitted
empirically from experimental data. For more details, please refer to Chelikowsky and
Cohen’s seminal work [19]. The specific values used in this calculation are summarized
in Table 11.1.

11.6.4 Python Implementation

Following the discussions in the previous section, we can write a Python Code as shown
below to compute the band structure of Si.

CHAPTER 11. ELECTRONIC STRUCTURE OF THE PERIODIC SYSTEM 155

Table 11.1: Parameters employed in the band structure calculation of Si and Ge.

System V (
√

3) V (
√

8) V (
√

11) a
(Ry) (Ry) (Ry) (Å)

Si [19] -0.2241 -0.0520 -0.0724 5.43
Ge [20] -0.2210 0.0190 0.0560 5.66

1 import numpy as np

2 from scipy import constants as c

3 import matplotlib.pyplot as plt

4 import seaborn as sns

5 sns.set(font_scale =1.8)

6

7 # Function to generate Miller indices (h, k, l) within a given range

8 def generate_hkls(N=3):

9 hkls = []

10 for h in range(-N, N+1):

11 for k in range(-N, N+1):

12 for l in range(-N, N+1):

13 #square = h**2 + k**2 + l**2

14 #if square <= g_max:

15 hkls.append ([h, k, l])

16 return np.array(hkls)

17

18 # Function to construct the Hamiltonian matrix for the system

19 def hamiltonian(k, a, form_factors , g_basis , hkls):

20

21 kinetic_c = (2 * np.pi / a)**2 * c.hbar **2 / (2 * c.m_e * c.e)

22 N = len(hkls)

23 h = np.zeros ([N, N])

24

25 # Loop through rows and columns of the Hamiltonian

26 for i in range(N):

27 for j in range(N):

28 if i == j: # kinetic energy

29 g = (hkls[i] + k) @ g_basis

30 h[i, i] = kinetic_c * g @ g

31 else: # potential energy

32 g = (hkls[i] - hkls[j]) @ g_basis

33 hkl_square = int(np.sum(g * g))

34 if hkl_square in form_factors.keys():

35 factor = form_factors[hkl_square]

36 h[i, j] = factor * np.cos(np.pi/4*sum(g))

37 return h

38

39 # Constants and Parameters

40 a = 5.43e-10

41 form_factors = {

42 3: -0.2241*13.6059 , # -0.2241),

43 8: 0.0551*13.6059 , #(0.0551) ,

44 11: 0.0724*13.6059 , #(0.0724)

45 }

46

47 g_basis = np.array([[-1, 1, 1], [1, -1, 1], [1, 1, -1]])

48 hkls = generate_hkls (2)

156 Atomistic Simulation in Materials Modeling

49

50 # https ://www.materialscloud.org/work/tools/seekpath

51 # Define high -symmetry k-points for band structure calculation

52 pts = {

53 "G": [0, 0, 0],

54 "X": [1/2, 0, 1/2],

55 "L": [1/2, 1/2, 1/2],

56 "W": [1/2, 1/4, 3/4],

57 "K": [3/8, 3/8, 3/4],

58 }

59

60 N_pts = 25

61 k_paths = None

62 k_paths_x = None

63 k_paths_labels = []

64 for path in ["GX", "XW", "WL", "LG", "GK"]:

65 b, e = pts[path [0]], pts[path [1]]

66 lines = [np.linspace(_b , _e , N_pts) for _b, _e in zip(b, e)]

67 k_path = np.stack(lines , axis=-1)

68 k_length = np.linalg.norm(k_path [0] - k_path [-1])

69 k_path_x = k_length * np.linspace(0, 1, N_pts)

70 if k_paths is not None:

71 x_max = k_paths_x [-1]

72 k_paths = np.vstack ((k_paths , k_path))

73 k_paths_x = np.hstack ((k_paths_x , k_path_x+x_max))

74 else:

75 k_paths = k_path

76 k_paths_x = k_path_x

77 k_paths_labels.append ((k_paths_x [0], path [0]))

78 k_paths_labels.append ((k_paths_x [-1], path [1]))

79

80 # Solve the eigenvalue for each band

81 bands = []

82 for kpt in k_paths:

83 H = hamiltonian(kpt , a, form_factors , g_basis , hkls)

84 eigvals = np.linalg.eigvals(H).real

85 eigvals.sort()

86 bands.append(eigvals [:8])

87

88 bands = np.stack(bands , axis=-1)

89 bands -= max(bands [3]) # shift to E_f = 0

90

91 # Plot the band structure

92 fig = plt.figure(figsize =(8, 6))

93 xmin , xmax = k_paths_x [0], k_paths_x [-1]

94 ymin , ymax = min(bands [0]) -0.1, 6

95 plt.xlim(xmin , xmax)

96 plt.ylim(ymin , ymax)

97

98 # Plot bands

99 for band in bands:

100 plt.plot(k_paths_x , band , lw =2.0)

101

102 # Add high -symmetry labels and vertical lines

103 for pos_x , label in k_paths_labels:

104 if label == "G": label = "Γ"
105 plt.text(pos_x , ymin -1.0, label , ha=’center ’)

106 plt.axvline(x=pos_x , color="k", linestyle="--", lw =1.0)

CHAPTER 11. ELECTRONIC STRUCTURE OF THE PERIODIC SYSTEM 157

107

108 plt.ylabel("Energy (eV)")

109 plt.xticks ([])

110 plt.tight_layout ()

111 plt.savefig("Fig11 -Si.pdf")

In the above Python code, we calculate and visualize the band structure of a silicon
crystal using a simplified model. The main steps are outlined as follows:

1. Generate Reciprocal Lattice Vectors (hkl): The generate hkls function generates
all possible combinations of Miller indices (h, k, l) within a defined range. These
indices represent reciprocal lattice vectors for constructing the Hamiltonian.

2. Construct the Hamiltonian: The hamiltonian function builds the Hamiltonian
matrix (H) for each wavevector k.

3. High-symmetry points in the Brillouin zone (Γ, X,W,L,K) are defined. And linear
interpolation generates k-paths connecting these points, creating a smooth trajec-
tory for band structure calculations.

4. Plot the Band Structure. We then shift the bands so that the maximum energy
of the 3rd band aligns with the Fermi energy for a clearer comparison. The bands
are plotted along the defined k-path, with labels and vertical lines marking the
high-symmetry points (Γ, X,W,L,K).

The final band structure is presented in Fig. 11.10. Clearly, the results capture the
essential features of the silicon band structure, showcasing the energy dispersion along
the high-symmetry directions Γ → X → W → L → Γ → K within the first Brillouin
zone. Comparing with the results from more expensive DFT calculation as shown in Fig.
11.7, the band energies are remarkably similar. However, our simplified pseudopotential
approach use only 3 parameters with 125 plane waves, demonstrating the effectiveness of
this model in reproducing key qualitative trends.

11.7. Summary

In this chapter, we introduced the electronic structure calculations for periodic systems
based on Bloch’s Theorem. The tight-binding approach, which utilizes linear combina-
tions of localized atomic orbitals, was employed to provide a qualitative understanding
of band structure dispersion. This approach highlights the fundamental relationship be-
tween energy levels and wave vectors, as well as the roles of on-site energies and hopping
integrals in determining the band structure.

Subsequently, we transitioned to the plane wave basis, combined with the pseudopo-
tential method, to achieve a more accurate description of the band structure. The use of
plane waves ensures periodicity and simplifies the representation of electronic wavefunc-
tions, while pseudopotentials effectively reduce the computational complexity by focusing
on valence electrons.

The example of silicon served as a practical case study, illustrating how these methods
can be applied to real materials. By working through these exercises, one can gain
a deeper understanding of band physics, computational frameworks, and the interplay
between model simplifications and numerical accuracy.

158 Atomistic Simulation in Materials Modeling

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

E
ne

rg
y

(e
V

)

X W L K

Figure 11.10: Calculated band structure of silicon, showing energy dispersion along
high-symmetry directions in the Brillouin zone. (QZ: to add dosplot and codes.)

Both the tight-binding and empirical pseudopotential methods have been widely used
to study the electronic structure of materials. These methods have played a crucial
role in providing qualitative and semi-quantitative insights into band structures, partic-
ularly during the early development of solid-state physics. While modern, more accurate
methods such as DFT have become the standard for electronic structure calculations,
these low-cost approaches still hold value in specific contexts such as massive materials
screening, large-scale systems and topological physics studies.

12. DFT Simulation of Crystals with
Plane Waves

In the previous chapter, we explored methods for computing the ground state of many-
electron systems in crystals using simplified approaches such as the tight-binding model
and the empirical pseudopotential method. While these techniques provide valuable
insights into electronic band structures, they often fall short in simultaneously capturing
total energy and band dispersion with high accuracy.

In this chapter, we shift our focus to a more comprehensive approach—utilizing the
plane-wave basis set—to investigate periodic systems in greater detail.

12.1. Pseudopotentials

For atoms with many electrons, explicitly calculating the interactions of every elec-
tron—particularly core electrons—can be computationally expensive. Pseudopotentials
simplify this process by replacing the effects of the core electrons with an effective po-
tential, allowing only the valence electrons to be explicitly considered.

From a practical perspective, the wavefunctions of core electrons oscillate rapidly
near the nucleus due to the strong Coulomb attraction. Accurately representing these
oscillations requires either a dense spatial grid or a large number of basis functions (such
as plane waves), significantly increasing computational costs.

Pseudopotentials address this challenge by smoothing out the wavefunction in the
core region while retaining accuracy in the valence region, making the calculations more
computationally efficient without sacrificing essential physics.

12.1.1 Norm-Conserving Pseudopotentials

The concept of norm conservation was first introduced by Topp and Hopfield [21] in the
context of empirical pseudopotentials and later extended to ionic potentials by Starkloff
and Joannopoulos [22].

Norm-conserving pseudopotentials are widely used in electronic structure calculations
due to their straightforward implementation and ability to accurately describe valence
electrons. The core idea is to replace the core electrons with a pseudopotential that
simplifies the behavior of valence electrons while satisfying the following conditions:

1. Outside the core radius rc : The pseudo-wavefunction ψpseudo exactly matches the
real wavefunction ψreal.

2. Inside the core radius: Although ψpseudo differs from ψreal within the core region,
the integral of the probability density up to rc (known as the norm) is conserved.

159

160 Atomistic Simulation in Materials Modeling

Mathematically, for each angular momentum l, the norm-conserving condition states:∫ rc

0

|ψpseudo(r)|2 r2dr =

∫ rc

0

|ψreal(r)|2 r2dr (12.1)

This condition ensures that the total probability density (norm) within the core region
is the same for both the real and pseudo-wavefunctions.

12.1.2 The Goedecker-Teter-Hutter Pseudopotential

The Goedecker-Teter-Hutter (GTH) pseudopotential [23] is a widely-used approach in
DFT simulations. It is particularly valued for its computational efficiency and smooth
representation, making it well-suited for plane-wave basis sets.

The GTH pseudopotential is expressed in a separable form, which simplifies its evalu-
ation in reciprocal space and significantly reduces the computational cost associated with
non-local potentials.

Specifically, the GTH pseudopotential employs a Gaussian expansion to represent
both the local potential and the non-local projectors. This formulation not only ensures
smooth behavior but also enhances compatibility with plane-wave basis sets, enabling
accurate and efficient simulations of periodic systems.

Vexternal(r) =
∑
i

Zi

r−Ri

→ Vps(r) = Vlocal(r) + Vnon-local(r) (12.2)

The local part is represented as a radial polynomial within a cutoff radius rc:

Vlocal(r) = −Zval

r
erf

(
r√

2rlocal

)
+ exp

[
−1

2

(
r

rlocal

)2
]

Ng∑
i=0

Ci

(
r

rlocal

)2i

. (12.3)

where Zval is the valence electron charge, rlocal is the distance, Ci are is the Gaussian
coefficient, and Ng is number of Gaussian terms used in the expansion. In the expression,
the leading term denotes the long range interaction with a decay of 1/r relation,
whereas the second term carries the short range information in terms of Gaussian.

Conversely, the non-local part is represented as a sum of angular momentum-dependent
projectors,

Vnon-local(r, r
′) =

3∑
i=1

3∑
j=1

+l∑
m=−l

Ylm(r̂)pli(r̂)hli,jp
l
j(r

′)Y ∗
lm(r̂′), (12.4)

where Ylm are the spherical hamonics, i and j are the indices of the radial projectors
for a given l, hlij is the nonlocal coupling matrix elements specific to l, and pli is the radial
projector functions in Gaussian:

pli(r) =

√
2rl+2(i−1) exp

(
− r2

2r2l

)
r
l+(4i−l)/2
l

√
Γ
(
l + 4i−1

2

) (12.5)

where Γ denotes the gamma function and rl are the distance for reciproocal space.

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 161

12.1.3 Pseudopotential at the reciprocal space

With the plane wave basis, we also need to evaluate the Vps at the reciprocal space (G).
The reciprocal space representation of the local pseudopotential is defined as:

V PS
local(G) =

∫
V PS
local(r)e

−iG·rd3r

For a spherically symmetric function V PS
local(r), this reduces to:

V PS
local(G) = 4π

∫ ∞

0

V PS
local(r)

sin(Gr)

Gr
r2dr

Using eq. 12.3, the Fourier transform of long range term −Zval/r × erf
(
r/
√

2
)

is:

−4πZval

G2
exp

(
−G

2r2local
2

)
For the short-range part, each term in the polynomial contributes to the Fourier

transform in the form: ∫ ∞

0

rne−ar2 sin(Gr)

Gr
r2dr

Combining the Fourier transforms of the long-range and short-range components, the
final expression is

Vlocal(G) = −4πZval

ΩG2
exp

(
−x

2

2

)
+

√
8π3

Ω
r3local exp

(
−x2

)
× (12.6)

[C1 + C2(3− x2) + C3(15− 10x2 + x4) + C4(105− 105x2 + 21x4 − x6)]

where x = Grlocal and the polynomial terms involve factors of (3− x2), (15− 10x2 +
x4), These arise from the Gaussian expansions and the Fourier transform of the
radial powers r2, r4,

In most cases, we evaluate the pseudopotential directly in the G-space and perform
an inverse Fourier transform to real space only when necessary.

The nonlocal part of GTH pseudopotential at G space can be described by

Vnon-local(G,G
′) =

3∑
i=1

3∑
j=1

+l∑
m=−l

Ylm(G)pli(G)hlijp
l
j(G

′)Y ∗
lm(G′), (12.7)

where the first few projectors can be analytically derived as discussed in the original
paper [24].

pl=0
1 (G) =

1√
Ω

4
√

2r3l π
5/4 exp[−(1/2)(Grl)

2], (12.8)

pl=0
2 (G) =

1√
Ω

8

√
2r3s
15
π5/4 exp[−(1/2)(Grl)

2]
[
3− (Grl)

2
]
, (12.9)

pl=1
2 (G) =

1√
Ω

8

√
r5l
3
π5/4 exp[−(1/2)(Grl)

2]G (12.10)

162 Atomistic Simulation in Materials Modeling

12.1.4 Expression of Structural Local Potentials

For a periodic structure, the local potential Vlocal(G) and nonlocal potential Vnon-local(G,G
′)

must be modified to account for periodic boundary conditions. This is achieved by mul-
tiplying them with the structure factor exp(iG ·Rn), where Rn represents the positions
of the atomic nuclei within the unit cell. This factor effectively imposes periodicity in
the simulation.

Using eq. 12.6, the local potential for the whole structure at G space,

V ps
local(G) =

∑
G

∑
n

Vlocal(G) exp(iG ·Rn). (12.11)

The counterpart at the R space can be evaluated via an Inverse Fast Fourier Transform
(IFFT).

V ps
local(R) = IFFT [V ps

local(G)] . (12.12)

To compute the nonlocal potential, we first define structural projector function

βilm,n(G) = pli(G)Ylm(Ĝ)eiG·Rn (12.13)

For simplicity, βilm,n will be shortened as βin in which i is the index of projector function
and n is the index of atoms in the structure. When the wavefunction becomes available,
we first compute the projection of the wavefunction onto each projector βi and then
evaluate the interactions,

V ps
non-local(G) =

∑
i,i′

hlii′⟨βi|ψ⟩βi′(G)

Considering the number of atoms, the formal expression is

V ps
non-local(G) =

∑
n

∑
i

∑
i′

β∗
in(G)hlii′

[∑
G′

βi′n(G′)ψ(G′)

]
(12.14)

In a practical calculation, one can pre-compute V ps
local and βin before hand. V ps

non-local

needs to be updated when wavefunction changes.

12.1.5 The Example of Si’s GTH potential

A typical example file for silicon is shown below from Ref. [24].

1 Si GTH -PADE -q4 GTH -LDA -q4

2 2 2

3 0.44000000 1 -7.33610297

4 2

5 0.42273813 2 5.90692831 -1.26189397

6 3.25819622

7 0.48427842 1 2.72701346

This file includes the following parameters in arbitrary units,

• The 1st line specifies the element. The PADE refers to the fitting function for the
exchange-correlation functional, and q4 specifies that the pseudopotential repre-
sents 4 valence electrons (the 3s23p2 electrons for silicon).

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 163

• The 2nd line 2 2 indicates the number of radial functions in the local part of
the pseudopotential (or the Gaussian expansions for the local potential) and the
number of angular momentum components l included in the non-local part of the
pseudopotential.

• The 3rd line lists the local potential parameters rlocal = 0.44, c0=-7.336.

• The rest lines define two project functions. For l = 0 at r0 = 0.42273813, it has
h011 = 90692831, h012 = −1.26189397, h022 = 3.25819622. For l = 1 at r1=0.48427842,
only nonzero nonlocal coupling matrix element is h111=2.72701346.

This example demonstrates reading and parsing the GTH parameter file, where the
component parameters can be mapped to components of Vlocal and Vnon-local as shown
in eqs. 12.3 and 12.4. Typically, the pseudopotential parameters depends a number of
factors, such as element, XC correlation functional and number of valence electrons.

12.2. Brillouin Zone Sampling

When studying crystalline solids in DFT, we need to account for the periodic nature of
the crystal lattice. The behavior of electrons in a crystal is described in terms of Bloch
states, which means that their wavefunctions depend on the wavevector k in reciprocal
space. The reciprocal space of a crystal is divided into regions known as Brillouin zones,
and solving the DFT equations over the entire Brillouin zone is crucial to accurately
capture the electronic properties of the system.

In periodic solids, the electronic properties (such as energy levels and densities) de-
pend on the wavevector k. Since the wavevector can take continuous values within the
Brillouin zone, we cannot solve the Kohn-Sham equations for every possible k point. For
a property F (e.g., energy, density of states or charge density), the averaged quantity can
be expressed analytically by integrating the whole Brillouin zone.

I(ϵ) =
1

ΩBZ

∫
BZ

F (ϵ)δ(ϵnk − ϵ)dk (12.15)

Instead, we need to sample the Brillouin zone at a discrete set of points and integrate
over the zone to compute quantities like the total energy, charge density, and density of
states.

I(ϵ) ≈
BZ∑
k

wikF (ϵ)δ(ϵnk − ϵ) (12.16)

Brillouin zone sampling is typically done by choosing a grid of k-points that represent
the possible electronic states within the zone. The accuracy of the DFT calculation
depends on how well the Brillouin zone is sampled. The more k-points you use, the more
accurate your results will be, but it will also increase the computational cost. To reduce
the cost, it is also common to use crystal symmetry constraints to perform calculation at
only the irreducible k-points, and then multiply the weights based on its multiplicity.

164 Atomistic Simulation in Materials Modeling

The irreducible k-points in a Simple Cubic Structure.

For a simple cubic lattice, the reciprocal lattice is also simple cubic. A 3 × 3 × 3
grid in the first Brillouin zone (BZ) includes 33 = 27 points:

(0, 0, 0),
(
±1

3
, 0, 0

)
,
(
0, ±1

3
, 0
)
,
(
0, 0, ±1

3

)
,(

±1
3
, ±1

3
, 0
)
,
(
±1

3
, 0, ±1

3

)
,
(
0, ±1

3
, ±1

3

)
,
(
±1

3
, ±1

3
,±1

3

)
.

Under cubic symmetries, many of the k-points become equivalent. Hence, one can
find a few representative points under all symmetry operations.

1. Γ: k = (0, 0, 0). All symmetry operation leads to the same solution. Hence
it has just 1 point.

2. Edge: k =
(
1
3
, 0, 0

)
. By applying all rotations and inversion, there are 6

equivalent points. (
±1

3
, 0, 0

)
,
(
0,±1

3
, 0
)
,
(
0, 0,±1

3

)
.

3. Face: k =
(
1
3
, 1
3
, 0
)
. Under all symmetry operations, one gets 12 points:

(±1
3
, ±1

3
, 0), (±1

3
, 0, ±1

3
), (0, ±1

3
, ±1

3
).

4. Body: k =
(
1
3
, 1
3
, 1
3

)
. Under sign flips, 8 points belong to the same family.

(±1
3
, ±1

3
, ±1

3
).

Putting it all together, we have 4 irreducible k-points in total:

1︸︷︷︸
Γ

+ 6︸︷︷︸
edge

+ 12︸︷︷︸
face

+ 8︸︷︷︸
body

= 27.

When performing band-structure or total-energy calculations, one only needs to
evaluate at these 4 k-points (with appropriate weights) instead of all 27 points.

If a band is completely filled the integral can be calculated accurately using a low
number of k-points (this is the case for semiconductors and insulators). If an orbital is
partially occupied in a metal, one may use the Fermi-Dirac smearing function,

fik =
1

exp
(

ϵik−µ
kBT

)
+ 1

12.3. Hamiltonian on the Plane Wave Basis

Under the planewave basis and pseudopotential assumption, we can rewrite the total
energy as follows

E = Ekinetic + Eps
local + Eps

non-local + EHartree + EXC + ENN (12.17)

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 165

And the Hamiltonian operator is

Ĥ = T̂ + V ps
local + V ps

non-local + VHartree + VXC (12.18)

In the context of DFT with the plane wave basis set, we seek to solve the Kohn-Sham
equation

Hψik(r) = ϵikψik(r),

where ϵik and ψik denote the energy and wavefunction of the ith orbital at wavevector k.
On the plane wave basis, the wavefunction is

ψik(r) =
1√
Ω

∑
G

ci,G+k exp[iG + k · r] (12.19)

where ci,G+k are the expansion coefficients to be solved.
After knowing ψik(r), we can update the electron density ρ(r) by counting the orbitals

that are occupied.

ρ(r) =
∑
k

Nocc∑
i=1

wkfikψ
∗
ik(r)ψik(r) (12.20)

12.3.1 Kinetic Operator and Energy

The kinetic operator and energy can be computed from

T̂k = −1

2
∇2ψk = −1

2
|G + k|2ψk (12.21)

Ekinetic = −1

2

∑
k

Nocc∑
i

∫
Ω

ψ∗
ik∇2ψik(r)dr = wkfik

∑
G

c2i,G+k|G + k|2 (12.22)

12.3.2 Pseudopotential and energy

The external energy (i.e., electron-nuclear energy under the pseudo potential) can be
evaluated separately. For the local part, it can be simply evaluated at the real grid space.

Eps
local =

∫
ρ(r)V PS

local(r)dr =
Ω

Ngrids

∑
ρ(r)V PS

local(r) (12.23)

For the nonlocal part, the evaluation can be done directly at the G space.

Eps
nonlocal =

∑
k

ilm∑
i,j

Nocc∑
n

wkfn⟨ψn|βilm⟩hlij⟨βjlm|ψn⟩∗ (12.24)

12.3.3 Hartree Potential and Energy

The Hartree potential satisfies Poisson’s equation:

∇2VHartree(r) = −4πρ(r)

166 Atomistic Simulation in Materials Modeling

Taking the Fourier transform

−G2VHartree(G) = −4πρ(G).

Hence

VHartree(G) =
4πρ(G)

G2
→ VHartree(r) = IFFT[VHartree(G)] (12.25)

And the Hartree energy is

EHartree =
1

2

∫
Ω

VHatree(r)ρ(r)dr =
Ω

2×Ngrids

∑
ρ(r)VHartree (12.26)

12.3.4 Exchange and Correlation

For the XC potential, there exist multiple choices such as LDA, GGA or hybrid forms.
The simplest form is Perdew-Zunger formula [14] as described in Chapter 8 (see equations
in 8.15, 8.16, 8.17, 8.18).

Since there exist many difference choices of XC functional, it is more convenient to call
it separately from libXc [25, 26], which provides a unified interface to evaluate XC en-
ergies and potentials for various approximations, including LDA, GGA, hybridfunctional
and many others.

In practice, there is a Python libarary pylibxc, which acts as a wrapper of libxc

library. This approach simplifies the computation of XC functionals, enabling flexibility
and extensibility. Below is an example demonstrating how to use pylibxc for evaluating
the LDA exchange functional:

1 # https :// gitlab.com/libxc/libxc

2 # Import pylibxc and numpy

3 >>> import pylibxc

4 >>> import numpy as np

5 # Build the LDA_X function

6 >>> func = pylibxc.LibXCFunctional("lda_x", "unpolarized")

7 # Create the input density

8 >>> inp = {"rho": np.random.random (3)}

9 >>> result = func.compute(inp)

10 # The result is a dictinary with ’zk’ and ’vrho’ values

11 >>> print(result["zk"])

12 [[-0.48574023]

13 [-0.59986568]

14 [-0.71961604]]

15 >>> print(result["vrho"])

16 [[-0.64765365]

17 [-0.79982091]

18 [-0.95948805]]

In short, one provides the electron density (plus other information if necessary) as the
input to call the API (pylibxc.LibXCFunctional) to get the potential or energy values.
Each function evaluation returns a dictionary of several items as follows,

1. “zk” (ϵX or ϵC): Represents the exchange energy density per unit volume, needed
by energy evaluation.

2. “vrho” (VX or VC): Corresponds to the functional derivative of the exchange energy
with respect to electron density, i.e., the exchange potential.

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 167

12.3.5 Conversion between Real and Reciprocal Space

When there is an update on electron density, the potential terms V ps
local, VXC and VHartree

needs to be updated as well. To avoid the computational cost, they can be first evaluated
at the R-space, and then the total sum is transformed back to G-space at once via the
Fourier Transform.

For the rest potential terms such as T and V ps
nonlocal, they can be directly evaluated at

the G-space in the entire SCF process.

12.3.6 Nuclear–Nuclear Interaction

Finally, the nuclear–nuclear interaction energy in a periodic system can be obtained
by Ewald summation [10]. The details about Ewald summation can be found in the
Appendix C and eq. C.6.

12.4. Diagonalization

Given that many plane waves need to be used, we need to construct a large H ma-
trix. However, we are only interested in the first few solutions of eigenvalues and eigen
wavefunctions. Diagonalizing the entire H matrix can be rather expensive.

12.4.1 The Davidson Approach

In 1975, Davidson proposed an iterative algorithm for finding a few of the lowest eigen-
values and corresponding eigenvectors of a large, sparse symmetric matrix [27]. It is
widely used in computational quantum mechanics and quantum chemistry, particularly
for solving eigenproblems in large systems electronic structure calculations.

Instead of diagonalizing the full matrix H, Davidson’s method focuses on building and
diagonalizing a small subspace matrix iteratively. The method improves the subspace in
each step using a correction vector based on the residual of the approximate eigenvector.
This approach essentially involves the following steps,

1. Start with an initial guess for the eigenvalues (λ0 = ⟨ψ|H|ψ⟩), where ψ is the trial
wavefunction.

2. Evaluate the residual vector to measure deviations from the exact solution:

R = λψ −Hψ

3. R is first normalized to the unit vector and then preconditioned to improve conver-
gence by reducing the high-frequency components:

R =
R

1 + |G|2

4. The Hamiltonian (H) and Overlap (S) matrices for the expanded subspace (ψ, R)
are computed separately,

H =

(
⟨ψ|H|ψ⟩ ⟨ψ|H|R⟩
⟨R|H|ψ⟩ ⟨R|H|R⟩

)
, S =

(
⟨ψ|ψ⟩ ⟨ψ|R⟩
⟨R|ψ⟩ ⟨R|R⟩

)
(12.27)

QIANG ZHU

168 Atomistic Simulation in Materials Modeling

5. Solve the eigenvalue problem for the expanded subspace:

HC = SCΛ

and then update the Hψ based on the new subspace eigenvectors:

ψ → CTψ + CTR

6. Iterate until the difference in eigenvalues between successive steps,

∆E = |λ(i+1) − λ(i)|,

falls below a predefined threshold (e.g., 10−6).

12.4.2 Alternative Approaches

While the Davidson method is widely adopted for large-scale eigenvalue problems, several
alternative diagonalization methods are available, such as:

1. Lanczos Method [28]: Efficient for finding a few extreme eigenvalues in sparse ma-
trices. It constructs an orthogonal basis for the Krylov subspace and reduces the
original matrix to a tridiagonal form, facilitating the extraction of eigenvalues. How-
ever, the method can suffer from numerical instability due to loss of orthogonality
among the generated vectors.

2. LOBPCG (Locally Optimal Block Preconditioned Conjugate Gradient) [29]: Suit-
able for large Hermitian eigenproblems and often faster than Davidson. It operates
by minimizing the Rayleigh quotient over a block of vectors, allowing simultaneous
computation of multiple eigenpairs. The incorporation of preconditioning enhances
convergence, making it suitable for large-scale problems.

3. Direct Diagonalization: This approach computes all eigenvalues and eigenvectors
of a matrix simultaneously through methods such as QR decomposition. While
it provides complete spectral information, the computational cost and memory re-
quirements scale cubically with the matrix size, rendering it impractical for large
matrices typically encountered in quantum mechanical simulations.

Diagonalization is often the bottleneck in modern electronic structure methods. There-
fore, algorithmic improvements and parallel implementations are critical for tackling large
systems effectively.

12.5. Self-Consistent Field

The SCF process is similar to what has been described in the previous chapters. For
convenience, the main proceedure is outlined as follows,

1. Initial Guess for Wavefunction Ψ and Electron Density ρ0(r):

2. Construct the Hamiltonian H: Using the input density, construct the effective
Hamiltonian that includes the following terms:

H = T + V ps
local + V ps

non-local + VHartree + VXC,

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 169

3. Solve the Kohn-Sham Equations via the diagonalization approach

4. Update Electron Density ρ(r): Compute the new density using the occupied Kohn-
Sham states, and update the total energy

5. Check for Convergence based on the change of Electron Density and total energy.

It must be noted that SCF may get stuck in some local energy minimum when the
initial guess is far from the solution. To stabilize convergence, a density mixing scheme
is applied. The updated density can be computed as:

ρnew = (1− β)ρold + βρout, (12.28)

where β is the mixing parameter (typically 0.2–0.8).
More sophisticated methods like Pulay mixing [30] and Broyden’s method [31, 32] can

be used for accelerated convergence by maintaining a history of previous densities. .

12.6. A Plane Wave DFT Code for Silicon

In this section, we will continue to use diamond silicon as an example to demonstrate
how to design DFT code on the plane wave basis set [33].

12.6.1 Initial Planning

Clearly, this would involve a lot of subroutines in order to make it. Similar to previous
Gaussian basis code, we can predefine a few classes.

• structure:

1. reads the lattice (L), element and atomic coordinates (R);

2. computes the volume (Ω) and reciprocal lattice (Lrec).

• planewave

1. generates the grid points and valid G vectors from (Ecut, Lrec);

2. generates the initial plane wave functions ψik from (Nocc, k);

3. orthonormalize the plane waves for each ψik

4. convert the wavefuntion to 3d grid formats;

5. computes the electron density ρ(r) in 3d grid formats;

• pseudopotential

1. initializes the GTH parameters (rlocal, Ci, rl, hij, Zval);

2. evaluate Vlocal(G) for the G vectors from eq. 12.6;

3. get the βilm(G) for the input i, l, m and the G vectors from eq. 12.13;

4. get the real spherical harmonics (Ylm for βilm(G) calculations, see equations
in the Appendix B)

5. get the Vlocal for the input model and planewave grids from eq. 12.11-12.12

170 Atomistic Simulation in Materials Modeling

6. get Vnonlocal for the input model and planewave grids from eq. 12.14

7. get Elocal for the whole structure from eq. 12.23

8. get Enonlocal for the whole structure from eq. 12.24

• hamiltonian

1. initialize the instance

2. get the total Hamiltonian operator (Ĥ) from eq. 12.18

3. get V ps
local from the pseudopotential class (only called once);

4. get V ps
local from the pseudopotential class;

5. get the kinetic operator T̂ from eq 12.21

6. get the VHartree from eq. 12.25

7. get the VXC from eq. 8.15-8.18;

8. get the total energy Etotal from eq. 12.17;

9. get the nuclear-nuclear energy ENN (only called once) eq. C.6;

10. get the kinetic energy Ekinetic from eq. 12.22;

11. get the Hartree energy EHartree from eq. 12.26;

12. get the XC energy EXC;

13. Davidson’s diagonalization to get reduced H from eq. 12.27

14. Self-consistent-field (SCF) to get the converged Ψik, ρ(r), Etotal.

12.6.2 Structure and Plane Wave Setup

In this example, we aim to solve the ground state and compute the band structure for
cubic diamond silicon with a lattice constant (a = 5.13155 Å), as introduced in the
previous chapter. We set the energy cutoff (Ecut) to 15 Ry and use a 3 × 3 × 3 k-point
grid for sampling the Brillouin zone.

For the electron density, the cutoff energy is often set as twice of Ecut (30 Ry). As
discussed earlier, a 3 × 3 × 3 k-point grid contains 27 k-points in total, but symmetry
reduces this number to just 4 irreducible k-points. However, the FCC lattice has a non-
cubic primitive cell, hence the 4 irreducible points are changed to (0, 0, 0), (1/3, 0, 1/3),
(1/3, 1/3, 1/3) and (1/3, 2/3, 1/3).

To start, we first implement and test the system related classes (structure and planewave-
basis).

1 import numpy as np

2 from scipy import linalg

3 from scipy.fft import fftn , ifftn

4

5 class Structure:

6 def __init__(self , lattice , positions):

7 """

8 A class to represent a crystal structure.

9 Args:

10 lattice: array , The lattice vectors of the system.

11 positions: array , The fractional atomic coordinates.

12 """

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 171

13 self.lattice = lattice

14 self.rec_lattice = 2 * np.pi * np.linalg.inv(lattice)

15 self.frac_positions = positions

16 self.cart_positions = positions @ lattice

17 self.volume = np.abs(np.linalg.det(lattice))

18

19 def __str__(self):

20 strs = "\nSystem Setup\n"

21 strs += f"Model volume: {self.volume :.4f}\n"

22 strs += "Model lattice (Bohr):\n"

23 for r in self.lattice:

24 strs += " ".join(f"{x:12.6f}" for x in r) + "\n"

25 strs += "Model rec.lat (Bohr^-1):\n"

26 for r in self.rec_lattice:

27 strs += " ".join(f"{x:12.6f}" for x in r) + "\n"

28 strs += "Model coordinates (frac):\n"

29 for r in self.frac_positions:

30 strs += " ".join(f"{x:12.6f}" for x in r) + "\n"

31 strs += "Model coordinates (cart):\n"

32 for r in self.cart_positions:

33 strs += " ".join(f"{x:12.6f}" for x in r) + "\n"

34 return strs

35

36 class PlaneWaveBasis:

37 def __init__(self , model , Ecut , kpoints , kweights , occs):

38 """

39 Args:

40 model: The structure class instance.

41 Ecut: float , The energy cutoff for the plane -wave basis.

42 kpoints: array , The k-points used in the calculation.

43 kweights: array , The weights of the k-points.

44 occs: array , The list of occupations

45 """

46 # System input

47 self.Ecutwfc = Ecut

48 self.Ecutrho = 4 * Ecut

49 self.model = model

50 self.occs = occs

51

52 # Kpoints

53 self.kpoints = kpoints @ self.model.rec_lattice

54 self.kweights = kweights

55 self.n_kpts = len(self.kpoints)

56

57 # FFT and G_vector setup

58 Gmax = 2 * np.sqrt(2 * self.Ecutwfc)

59 inv_lat_t = np.linalg.inv(self.model.rec_lattice.T)

60 norm = np.ceil(np.linalg.norm(inv_lat_t , axis =1) * Gmax)

61 self.fx = int(norm [0])

62 self.fy = int(norm [1])

63 self.fz = int(norm [2])

64 grids = np.array ([self.fx, self.fy, self.fz], dtype=int)

65 self.grids = 2 * grids + 1

66 self.num_grids = np.prod(self.grids)

67 self.get_g_vectors ()

68 self.num_gs = len(self.g_rhos)

69 self.num_gws = [len(g) for g in self.g_wfcs]

70 self.max_g2 = (self.g_rhos **2).sum(axis =1).max()

172 Atomistic Simulation in Materials Modeling

71 self.max_g2w = [(g**2).sum(axis =1).max() for g in self.g_wfcs]

72

73

74 def __str__(self):

75 strs = "\nPlanewave Setup\n"

76 strs += f"Cutoff Energy in planewave (Ry): {self.Ecutwfc }\n"

77 strs += f"Cutoff Energy in density (Ry): {self.Ecutrho }\n"

78 strs += f"FFT Grid Size: {self.grids}\n"

79 strs += f"Num g vectors in density: {self.num_gs }\n"

80 strs += f"Num g vectors in planewave: {self.num_gws }\n"

81 strs += f"Max g2 vectors in density: "

82 strs += f"{self.max_g2 :10.4f}"

83 strs += f"\nMax g2 vectors in planwwave: "

84 strs += " ".join(f"{x:10.4f}" for x in self.max_g2w)

85 strs += "\n"

86 strs += f"Num kpoints used: {self.n_kpts }\n"

87 for kpt , kw in zip(self.kpoints , self.kweights):

88 strs += " ".join(f"{x:12.6f}" for x in kpt)

89 strs += f" weight: {kw :12.6f}\n"

90

91 return strs

92

93 def get_g_vectors(self):

94 """

95 Compute g-vectors and 3D masks for the FFT grid.

96 Note we have two cutoff values for electron density

97 and planewave expansions

98 """

99 n_kpts = self.n_kpts

100 [gx , gy , gz] = self.grids

101

102 g_rhos = []

103 g_wfcs = [[] for _ in range(n_kpts)]

104 g_masks_r = np.zeros ([gx, gy, gz], dtype=int)

105 g_masks_w = np.zeros ([n_kpts , gx, gy, gz], dtype=int)

106

107 # (0, 1, 2, .., N, N-1, N-2, -1)

108 for i in range(gx):

109 ii = i - gx if i > gx // 2 else i

110 for j in range(gy):

111 jj = j - gy if j > gy // 2 else j

112 for k in range(gz):

113 kk = k - gz if k > gz // 2 else k

114 g = np.array ([ii, jj, kk])

115 g = g @ self.model.rec_lattice

116 if np.sum(g**2) <= 2 * self.Ecutrho:

117 g_rhos.append(g)

118 g_masks_r[i, j, k] = 1

119 for l in range(n_kpts):

120 g1 = g + self.kpoints[l]

121 if np.sum(g1**2) <= 2 * self.Ecutwfc:

122 g_wfcs[l]. append(g1)

123 g_masks_w[l, i, j, k] = 1

124 self.g_wfcs = [np.array(g_wfc) for g_wfc in g_wfcs]

125 self.g_rhos = np.array(g_rhos)

126 self.g_masks_r = g_masks_r.astype(bool)

127 self.g_masks_w = g_masks_w.astype(bool)

128

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 173

129 def orthonormalize(self , psi):

130 """

131 Make the wavefunction be orthonormal

132 S = psi^+ psi => psi => S^(-1/2) psi

133 """

134 psi_sqrt = linalg.sqrtm(np.conj(psi) @ psi.T)

135 return linalg.inv(psi_sqrt).T @ psi

136

137 def random_guess(self):

138 """

139 Random wavefunction from the number of occupied states

140 """

141 n_states = len(self.occs)

142 n_kpts = self.n_kpts

143 psi_1d = [[] for _ in range(n_kpts)]

144

145 for ik in range(n_kpts):

146 n_gs = len(self.g_wfcs[ik])

147 real_part = np.random.rand(n_states , n_gs)

148 imag_part = np.random.rand(n_states , n_gs)

149 psi = real_part + 1j * imag_part

150 psi = self.orthonormalize(psi)

151 psi_1d[ik] = psi

152 self.psi_1d = psi_1d

153 self.get_psi_3d ()

154 self.get_rho_r ()

155

156 def get_psi_3d(self):

157 """

158 Get psi in 3d grids format for a single kpoint

159

160 Args:

161 psi_1d: array , The wavefunction in 1D g-space.

162 ik: int , The k-point

163 """

164 n_kpts = self.n_kpts

165 psi_3d = [[] for _ in range(n_kpts)]

166 for ik in range(n_kpts):

167 psi_3d[ik] = self.get_psi_3d_single(self.psi_1d[ik], ik)

168 self.psi_3d = psi_3d

169 return psi_3d

170

171 def get_psi_3d_single(self , psi_1d , ik):

172 [gx , gy , gz] = self.grids

173 mask = self.g_masks_w[ik]

174 ns = len(psi_1d)

175

176 psi_3d_k = np.zeros ([ns, gx, gy, gz], dtype=complex)

177 for i in range(ns):

178 psi_3d_k[i][mask] += psi_1d[i]

179 return psi_3d_k

180

181 def get_rho_r(self):

182 """

183 Get electron density in real space

184 """

185 num_gs = len(self.g_wfcs)

186 vol = self.model.volume

174 Atomistic Simulation in Materials Modeling

187 rho = np.zeros(self.grids)

188

189 for ik , kw in enumerate(self.kweights):

190 for i, occ in enumerate(self.occs):

191 psi_r = np.fft.ifftn(self.psi_3d[ik][i])

192 psi_r *= np.sqrt(self.num_grids / vol)

193 rho_r = np.real(psi_r * np.conj(psi_r))

194 rho_r /= np.sum(rho_r)

195 rho_r *= 2 * occ * kw * self.num_grids / vol

196 rho += rho_r

197 rho = np.maximum(rho , 2.22e-16) # Avoid division by zero

198 self.rho_r = rho

199

200 if __name__ == "__main__":

201 # Setup random seed to ensure reproducibility

202 np.random.seed (42)

203

204 # System

205 lattice = 5.13155 * np.array ([[0, 1, 1], [1, 0, 1], [1, 1, 0]])

206 positions = np.array ([[0, 0, 0], [0.25 , 0.25, 0.25]])

207 model = Structure(lattice , positions)

208 print(model)

209

210 # Planewave (3*3*3 grid with symmetry reduction)

211 kpoints=np.array ([[0, 0, 0],

212 [1/3, 0, 1/3],

213 [1/3, 1/3, 1/3],

214 [1/3, 2/3, 1/3]])

215 kweights=np.array ([1., 6., 8., 12.]) /27.

216 occs = np.array ([1, 1, 1, 1, 0, 0])

217 pw = PlaneWaveBasis(model ,

218 Ecut =15.0,

219 kpoints=kpoints ,

220 kweights=kweights ,

221 occs=occs)

222 print(pw)

223

224 # initialize random wavefunctions and electron density

225 pw.random_guess ()

226 rho = pw.rho_r.sum() * pw.model.volume/pw.num_grids

227 print(f"Total Number of electrons: {rho}")

This code snippet provides a Python implementation for initializing a crystal struc-
ture and setting up a plane-wave basis for electronic structure calculations. The Structure
class encodes the crystal structure’s lattice, reciprocal lattice, atomic positions, and unit
cell volume. These quantities can be directly accessed later. The PlaneWaveBasis Class
represents the plane-wave basis set, including the energy cutoff, FFT grid, and recip-
rocal space G vectors. The implementation includes functionality to generate random
wavefunctions and compute the electron density.

The str methods in both the Structure and PlaneWaveBasis classes are imple-
mented to provide a human-readable summary of the object’s key properties, enabling
easy and informative printouts. This feature simplifies debugging, testing, and report-
ing by presenting the essential details of the initialized objects in a clear and structured
format.

According to eq. 11.13, the number of grids 2N + 1 in each direction is assigned.
To ensure consistency with the Fast Fourier Transform algorithm, the indices have to be

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 175

aligned as (0, 1, 2, . . . , N,N−1, . . . ,−1), where the 2nd half of grids represent the negative
frequencies due to the discrete Fourier transform symmetry. Without this mapping, high-
frequency terms (e.g., N,N+1, . . .) will not be correctly interpreted, leading to incorrect
transforms and aliasing artifacts.

Assuming the inputs are the silicon diamond crystal with 2 atoms in the unit cell,
four valence electrons for each atom, and a total of six bands (four fully occupied and
two empty), the outputs are shown below.

1 System Setup

2 Model volume: 270.2562

3 Model lattice (Bohr):

4 0.000000 5.131550 5.131550

5 5.131550 0.000000 5.131550

6 5.131550 5.131550 0.000000

7 Model rec.lat (Bohr^-1):

8 -0.612211 0.612211 0.612211

9 0.612211 -0.612211 0.612211

10 0.612211 0.612211 -0.612211

11 Model coordinates (frac):

12 0.000000 0.000000 0.000000

13 0.250000 0.250000 0.250000

14 Model coordinates (cart):

15 0.000000 0.000000 0.000000

16 2.565775 2.565775 2.565775

17

18

19 Planewave Setup

20 Cutoff Energy in planewave (Ry): 15.0

21 Cutoff Energy in density (Ry): 60.0

22 FFT Grid Size: [27 27 27]

23 Num g vectors in density: 5985

24 Num g vectors in planewave: [749, 749, 757, 740]

25 Max g2 vectors in density: 119.9368

26 Max g2 vectors in planwwave: 29.9842 29.7760 29.9842 29.8176

27 Num kpoints used: 4

28 0.000000 0.000000 0.000000 weight: 0.037037

29 0.000000 0.408141 0.000000 weight: 0.222222

30 0.204070 0.204070 0.204070 weight: 0.296296

31 0.408141 0.000000 0.408141 weight: 0.444444

12.6.3 Pseudopotential Setup

Using the structural information of the system, we create a Pseudopotential class to
model the ionic potential felt by valence electrons.

The implementation provided in this example is based on the HGH formalism. This
pseudopotential class allows us to handle local and nonlocal potentials in both real space
and reciprocal space.

1 from scipy.special import erf , sph_harm

2

3 class PspHgh:

4 """

5 A class to represent a pseudopotential in the HGH form.

6 Modification of the original code from DFTK.jl:

7 https :// github.com/JuliaMolSim/DFTK.jl

8 Equations are taken from the original paper:

176 Atomistic Simulation in Materials Modeling

9 Hartwigsen , Goedecker and Hutter. Phys. Rev. B, 58, 3641, 1998

10

11 Parameters:

12 Z : float , The ionic charge.

13 rloc : float , The local pseudopotential radius.

14 cloc : array -like , The coefficients for the local pp

15 rp : array -like , The projector radii.

16 h : array -like , The projector coefficients.

17 """

18

19 def __init__(self , Z, rloc , cloc , rp , h):

20 self.name = "Si"

21 self.Z = Z

22 self.rloc = rloc

23 if len(cloc) < 4:

24 self.cloc = np.pad(cloc , (0, 4 - len(cloc)), "constant")

25 else:

26 self.cloc = cloc

27 self.lmax = len(h) - 1

28 self.proj = ["s", "p", "d", "f"][: len(h)]

29 self.rp = rp

30 self.h = h

31 self.ilm_indices = [(1, 0, 0),

32 (2, 0, 0),

33 (1, 1, -1),

34 (1, 1, 0),

35 (1, 1, 1)]

36 self.num_ilms = len(self.ilm_indices)

37

38 def __str__(self):

39 strs = "\nPseudopotential Setup\n"

40 strs += f"Element: {self.name}\n"

41 strs += f"Number of electrons: {self.Z}\n"

42 strs += f"local radius: {self.rloc :.6f}\n"

43 strs += f"local coefficients: "

44 for cloc in self.cloc:

45 if abs(cloc) > 0:

46 strs += f"{cloc :12.6f}"

47 else:

48 strs += "\n"

49 break

50 for l in range(self.lmax +1):

51 proj , rp, h = self.proj[l], self.rp[l], self.h[l]

52 strs += f"Nonlocal Projector {proj}: {rp :12.6f}\n"

53 strs += f"Coupling matrix\n"

54 for c in h:

55 strs += " "

56 strs += " ".join(f"{x:12.6f}" for x in c) + "\n"

57 return strs

58

59 def eval_v_local_r(self , r):

60 """

61 Evaluate the local pseudopotential in real space , eq. (12.3)

62 """

63 cloc = self.cloc

64 rr = r / self.rloc

65 return (-self.Z / r * erf(rr / np.sqrt (2))

66 + np.exp(-rr**2 / 2) * (cloc [0] +

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 177

67 cloc [1] * rr**2 + cloc [2] * rr**4 + cloc [3] * rr**6))

68

69 def eval_v_local_g(self , g):

70 """

71 Compute the local pseudopotential polynomial , eq. (12.6)

72 """

73 g = np.array(g)

74 g2 = (g ** 2).sum(axis =1)

75 V = np.zeros(len(g2), dtype=complex)

76

77 # only deal with non -zero g vectors

78 ids = g2 > 1e-2

79 ids0 = g2 <= 1e-2

80 g2 = g2[ids]

81

82 rloc = self.rloc

83 x2 = g2 * (rloc ** 2)

84 Z = self.Z

85

86 exp = np.exp(-0.5 * x2)

87

88 term1 = -4 * np.pi * Z / g2 * exp

89

90 P = (self.cloc [0]

91 + self.cloc [1] * (3. - x2)

92 + self.cloc [2] * (15. - 10. * x2 + x2**2)

93 + self.cloc [3] * (105. - 105. * x2 + 21. * x2**2 - x2**3))

94 term2 = np.sqrt (8.0 * np.pi **3) * rloc ** 3 * exp * P

95 V[ids] = term1 + term2

96

97 # Separately process g=0

98 term0 = (2. * np.pi)**1.5 * rloc **3 * (self.cloc [0] +

99 3. * self.cloc [1] +

100 15. * self.cloc [2] +

101 105. * self.cloc [3])

102 V[ids0] = 2 * np.pi * Z * rloc **2 + term0

103

104 return V

105

106 def eval_proj_g(self , g, i, l, vol):

107 """

108 Compute the projector polynomial , eq. (12.8) -(12.10)

109

110 Args:

111 i : int , The projector index.

112 l : int , The angular momentum.

113 """

114 g1 = np.linalg.norm(g, axis =1)

115 rp = self.rp[l]

116 x2 = (g1 * rp)**2

117 exp = np.exp(-0.5 * x2)

118 prefactor = 4 * np.pi**(5 / 4) * np.sqrt (2**(l + 1) * rp**(2 *

l + 3) / vol)

119 common = exp * prefactor

120

121 if [i, l] == [1, 0]:

122 return common

123 if [i, l] == [1, 1]:

178 Atomistic Simulation in Materials Modeling

124 return common * g1 / np.sqrt (3)

125 if [i, l] == [2, 0]:

126 return common * 2. / np.sqrt (15.) * (3 - x2)

127

128 def get_ylm_real(self , g, l, m):

129 """

130 Compute the real valued spherical harmonics , see eq (A.4).

131 """

132 ylms = np.zeros(len(g))

133 gm = np.linalg.norm(g, axis =1) + 1e-7

134 theta = np.arccos(g[:, 2] / gm)

135 phi = np.arctan2(g[:, 1], g[:, 0])

136 ylm = sph_harm(m, l, phi , theta)

137 if m > 0:

138 return np.sqrt (2) * (-1)**m * np.real(ylm)

139 elif m < 0:

140 return np.sqrt (2) * (-1)**m * np.imag(ylm)

141 else:

142 return np.real(ylm)

143

144 def get_beta_nonlocal(self , pw):

145 """

146 Get beta_ilm for the given structure eq. (12.13)

147 [N_kpt][N_gx , N_atom]

148

149 Args:

150 pw: planewave instance

151 """

152 vol = pw.model.volume

153 pos = pw.model.cart_positions

154 beta_ilms = [[] for _ in range(pw.n_kpts)]

155

156 for ik in range(pw.n_kpts):

157 gs = pw.g_wfcs[ik] + pw.kpoints[ik]

158 sf = np.exp(1j* (gs @ pos.T)) # (ng , 3) (3, 2)

159 beta_ilm = np.zeros ([self.num_ilms , len(gs), len(pos)],

160 dtype=complex)

161

162 for id , ilm in enumerate(self.ilm_indices):

163 (i, l, m) = ilm

164 proj = self.eval_proj_g(gs , i, l, vol)

165 ylms = self.get_ylm_real(gs , l, m)

166 proj *= ylms

167 beta_ilm[id] = np.einsum(’i,ij->ij’, proj , sf)

168 beta_ilm[id] *= (-1j)**l

169 beta_ilms[ik] = beta_ilm

170 self.beta_nl = beta_ilms

171

172 def get_v_loc_r(self , pw):

173 """

174 Compute the structural V_ps_local , eq. (12.11) -(12.12)

175

176 Args:

177 pw: planewave instance

178 """

179 grids = pw.grids

180 n_grids = pw.num_grids

181 vol = pw.model.volume

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 179

182 g_masks = pw.g_masks_r

183 g_vectors = pw.g_rhos

184 v_loc_g = np.zeros(grids , dtype=complex)

185

186 # get v_loc_g

187 pos = (pw.model.cart_positions).T

188 sf = np.exp(1j*g_vectors @ pos).sum(axis =1)

189 v_loc_g_1D = self.eval_v_local_g(g_vectors)

190 v_loc_g_1D *= sf / vol

191

192 # convert to 3D

193 v_loc_g[g_masks] = v_loc_g_1D.conj()

194

195 # fft to real space

196 self.v_loc_g = v_loc_g #_1D

197 self.v_loc_r = np.fft.ifftn(v_loc_g).real * n_grids

198

199 def get_v_nloc(self , pw , psi=None , ik=0):

200 """

201 Compute the structural V_ps_nonlocal with eq (12.14)

202

203 Args:

204 pw: planewave instance

205 psi: array , The wavefunction in 1D g-space.

206 ik: int , The k-point

207 """

208 if psi is None:

209 psi = pw.psi_1d[ik] # (N_states , Ngx)

210

211 V = np.zeros(psi.shape , dtype=complex)

212

213 # h[i,j] * beta * < beta^* | psi >

214 n_ilms = len(self.ilm_indices)

215 beta = self.beta_nl[ik] # (N_ilm , Ngx , Natoms)

216 # <beta|psi > => (N_ilm , Nat , Nst)

217 # (N_ilm , Ngx , Nat) (Nst , Ngx)

218 out = np.einsum(’ijk ,lj ->ikl’, beta , psi).conj()

219 #out = np.einsum(’ijk ,lj->ikl ’, beta , psi)

220

221 for id1 in range(n_ilms):

222 (i1, l1, m1) = self.ilm_indices[id1]

223 for id2 in range(n_ilms):

224 (i2, l2, m2) = self.ilm_indices[id2]

225 if [l1, m1] == [l2, m2]:

226 coef = self.h[l1][i1 -1, i2 -1]

227 tmp2 = np.einsum(’ij ,jk ->ki’, beta[id1], out[id2])

228 V += coef * tmp2.conj()

229 return V

230

231 def get_E_loc(self , pw):

232 """

233 Compute the structural E_ps_local , eq. (12.23)

234

235 Args:

236 pw: planewave instance

237 """

238 dvol = pw.model.volume / pw.num_grids

239 E_loc = (self.v_loc_r * pw.rho_r).sum() * dvol

180 Atomistic Simulation in Materials Modeling

240 return E_loc

241

242 def get_E_nloc(self , pw):

243 """

244 Compute the structural E_ps_nlocal , eq. (12.24)

245

246 Args:

247 pw: planewave instance

248 """

249 E = 0

250 occs = pw.occs

251 for ik in range(pw.n_kpts):

252 kw = pw.kweights[ik]

253 n_ilms = len(self.ilm_indices)

254 psi = pw.psi_1d[ik] # (N_states , Ngx)

255 beta = self.beta_nl[ik] # (N_ilm , Ngx , Natoms)

256 out = np.einsum(’ijk ,lj ->ikl’, beta , psi)

257

258 for idx1 in range(n_ilms):

259 (i1, l1, m1) = self.ilm_indices[idx1]

260 for idx2 in range(n_ilms):

261 (i2, l2, m2) = self.ilm_indices[idx2]

262 if [l1 , m1] == [l2 , m2]:

263 coef = self.h[l1][i1 -1, i2 -1]

264 beta2 = (out[idx1] * out[idx2].conj()).real

265 beta2 = beta2 * occs[None , None , :]

266 E += kw * coef * np.sum(beta2)

267 return 2*E

This class includes:

• Initialization: Handles input parameters for pseudopotential properties, including
coefficients for local and nonlocal terms.

• Local Potential Evaluation: Computes Vlocal both in real and reciprocal space.

• Evaluates nonlocal contributions by projecting angular momentum channels onto
wavefunctions.

• Calculates local and nonlocal energy contributions based on the electron density
and wavefunctions.

In this class, we also need to compute the real valued spherical harmonics. To focus
on the DFT implementation, we put the discussion in the Appendix B.

The outputs are shown below.

1 Pseudopotential Setup

2 Element: Si

3 Number of electrons: 4

4 local radius: 0.440000

5 local coefficients: -7.336103

6 Nonlocal Projector s: 0.422738

7 Coupling matrix

8 5.906928 -1.261894

9 -1.261894 3.258196

10 Nonlocal Projector p: 0.484278

11 Coupling matrix

12 2.727013 0.000000

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 181

13 0.000000 0.000000

14

15 E_psp_local: -9.555803

16 E_psp_nonlocal: 4.400774

12.6.4 The Hamiltonian Class

The Hamiltonian class is responsible for constructing the total energy functional and
applying the Hamiltonian operator during SCF iterations. It incorporates contributions
from kinetic energy, local and nonlocal pseudopotentials, Hartree energy, and exchange-
correlation energy terms.

1 class Hamiltionian:

2 """

3 A class to compute the hamiltonian

4

5 Parameters:

6 pw: the planewave instance

7 psp: the pseudopotential instance

8 """

9

10 def __init__(self , pw , psp):

11 # planewaves and pseudopotential

12 self.pw = pw

13 psp.get_v_loc_r(pw)

14 psp.get_E_loc(pw)

15 psp.get_beta_nonlocal(pw)

16 self.psp = psp

17

18 # potential terms

19 self.V_ps_loc = psp.v_loc_r

20 self.V_Hartree = np.zeros(pw.grids)

21 self.V_XC = np.zeros(pw.grids)

22 self.V_total = None

23

24 # energie terms

25 self.E_Kinetic = 0

26 self.E_ps_loc = 0

27 self.E_XC = 0

28 self.E_Hartree = 0

29 self.E_ps_nloc = 0

30 self.E_total = 0

31 self.E_NN = -8.3979274 # precomputed

32

33 def __str__(self):

34 strs = "\nHamiltonian"

35 strs += f"\nE_Kinetic: {self.E_Kinetic :12.6f}"

36 strs += f"\nE_ps_local: {self.E_ps_loc :12.6f}"

37 strs += f"\nE_ps_nloc: {self.E_ps_nloc :12.6f}"

38 strs += f"\nE_Hartree: {self.E_Hartree :12.6f}"

39 strs += f"\nE_XC: {self.E_XC :12.6f}"

40 strs += f"\nE_NN: {self.E_NN :12.6f}"

41 strs += f"\nE_total: {self.E_total :12.6f}"

42 return strs

43

44 def get_E_total(self):

45 """

182 Atomistic Simulation in Materials Modeling

46 Compute the total energy , eq. (12.17)

47 """

48 self.E_XC = self.get_E_XC ()

49 self.E_Hartree = self.get_E_Hartree ()

50 self.E_ps_loc = self.get_E_ps_loc ()

51 self.E_ps_nloc = self.get_E_ps_nloc ()

52 self.E_Kinetic = self.get_E_Kinetic ()

53 self.E_total = self.E_ps_loc + self.E_XC + self.E_Hartree

54 self.E_total += self.E_ps_nloc + self.E_Kinetic + self.E_NN

55 return self.E_total

56

57 def get_H_op(self , ik=0, psi=None):

58 """

59 Compute the Hamiltonian operator , eq. (12.18)

60 """

61 if psi is None: psi = self.pw.psi_1d[ik]

62 ns = len(psi)

63 ngs = len(psi [0])

64 mask = self.pw.g_masks_w[ik]

65

66 # Don’t update local potential in diag func

67 if self.V_total is None:

68 V_XC = self.get_V_XC ()

69 V_H = self.get_V_Hartree ()

70 self.V_XC = V_XC

71 self.V_Hartree = V_H

72 self.V_total = self.V_ps_loc.real + V_XC + V_H

73 V = self.V_total

74

75 # Local potential: V(r) => V(g)

76 Vg = np.zeros([ns , ngs], dtype=complex)

77 psi_3d = self.pw.get_psi_3d_single(psi , ik)

78 for i, _psi in enumerate(psi_3d):

79 psi_r = np.fft.ifftn(_psi)

80 Vg[i] += np.fft.fftn(V * psi_r)[mask]

81

82 # Update kinetic operator

83 T = self.get_K_op(psi , ik)

84

85 # Update nonlocal potential

86 V_ps_nloc = self.psp.get_v_nloc(self.pw, psi , ik)

87

88 # Get the H

89 H = T + Vg + V_ps_nloc

90

91 return H

92

93 def get_K_op(self , psi_1d , ik):

94 """

95 Get kinetic operator in 1D g space (eq. 12.21)

96 """

97 k = self.pw.kpoints[ik]

98 gs = self.pw.g_wfcs[ik]

99 g2s = np.sum((gs + k)**2, axis =1)

100 T = 0.5 * (g2s * psi_1d)

101 return T

102

103 def get_V_XC(self , backend=None):

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 183

104 """

105 Get Exchange -Correlation potential in 3D real space.

106 Use the Perdew -Zunger (PZ81) for correlation (see eq.).

107 """

108 rho = self.pw.rho_r

109

110 if backend is not None: # Call pylibxc

111 import pylibxc

112

113 func = pylibxc.LibXCFunctional("lda_x", "unpolarized")

114 results = func.compute ({"rho": rho})

115 V_X , eps_X = results["vrho"], results["zk"]

116 func = pylibxc.LibXCFunctional("lda_c_pz", "unpolarized")

117 results = func.compute ({"rho": rho})

118 V_C , eps_C = results["vrho"], results["zk"]

119

120 else: # from own code

121 # Exchange

122 eps_X = -0.75 * (3.0 * rho / np.pi) ** (1 / 3)

123 V_X = (4 / 3) * eps_X

124

125 # Correlation Potential (V_C) using PZ81

126 # Compute Wigner -Seitz radius (rs)

127 rs = (3 / (4 * np.pi * rho)) ** (1 / 3)

128 rs = np.minimum(rs , 1e6) # Avoid excessively large values

129

130 # PZ81 Parameters

131 Ah, Bh, Ch, Dh = 0.0311 , -0.048, 0.002 , -0.0116

132 g, b1 , b2 = -0.1423, 1.0529 , 0.3334

133

134 # Correlation energy per particle , eps_C(rs)

135 eps_C = np.zeros_like(rs)

136 V_C = np.zeros_like(rs)

137

138 # High -density region (rs < 1)

139 mask_h = rs < 1

140 rh = rs[mask_h]

141 logh = np.log(rh)

142 eps_C[mask_h] = Ah * logh + Bh + Ch * rh * logh + Dh * rh

143 V_C[mask_h] = Ah * logh + (Bh - Ah / 3.) + \

144 2./3. * Ch * rh * logh + \

145 (2. * Dh - Ch) / 3. * rh

146

147 # Low -density region (rs >= 1)

148 mask_l = ~mask_h

149 rl = rs[mask_l]

150

151 # Corrected formula for correlation energy and potential

152 rs = np.sqrt(rl)

153 ox = 1. + b1 * rs + b2 * rl

154 dox = 1. + 7./.6 * b1 * rs + 4./3. * b2 * rl

155 eps_C[mask_l] = g / ox

156 V_C[mask_l] = eps_C[mask_l] * dox / ox

157

158 V_XC = (V_X + V_C).reshape(self.pw.grids)

159 eps_XC = (eps_X + eps_C).reshape(self.pw.grids)

160

161 return V_XC , eps_XC

184 Atomistic Simulation in Materials Modeling

162

163 def get_V_Hartree(self):

164 """

165 Get Hartree potential in 3D real space (eq. 12.25)

166 """

167 mask = self.pw.g_masks_r

168 gs = self.pw.g_rhos

169 g2 = (gs**2).sum(axis =1) + 1e-12

170 rho_g = np.fft.fftn(self.pw.rho_r) * 4 * np.pi

171 V_g = np.zeros(self.pw.grids , dtype=complex)

172 V_g[mask] = rho_g[mask] / g2

173

174 # Reset the gamma to 0

175 V_g[0, 0, 0] = 0

176

177 return np.real(np.fft.ifftn(V_g))

178

179 def get_E_Kinetic(self):

180 """

181 Compute the kinetic energy , eq. (12.22)

182 """

183 E = 0.0

184 occs = self.pw.occs

185 for ik in range(self.pw.n_kpts):

186 k = self.pw.kpoints[ik]

187 kw = self.pw.kweights[ik]

188 gs = self.pw.g_wfcs[ik]

189 g2s = np.sum((gs + k)**2, axis =1)

190

191 psi = self.pw.psi_1d[ik]

192 factor = kw * occs[:, None] * g2s[None , :]

193 E += ((psi.conj() * psi).real * factor).sum()

194

195 return E

196

197 def get_E_XC(self):

198 """

199 Compute the exchange -correlation energy from pylibxc

200 """

201 dvol = self.pw.model.volume / self.pw.num_grids

202 E = (self.eps_XC * self.pw.rho_r).sum() * dvol

203 return E

204

205 def get_E_Hartree(self):

206 """

207 Compute the Hartree energy , eq. (12.26)

208 """

209 dvol = self.pw.model.volume / self.pw.num_grids

210 E = 0.5 * (self.V_Hartree * self.pw.rho_r).sum() * dvol

211 return E

212

213 def get_E_ps_nloc(self):

214 return self.psp.get_E_nloc(self.pw)

215

216 def get_E_ps_loc(self):

217 return self.psp.get_E_loc(self.pw)

218

219 def diag(self , psi , ik=0):

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 185

220 """

221 Davidson dialgonalization

222 """

223 ns = len(psi)

224 HX = self.get_H_op(ik , psi)

225

226 # Initial guess eigenvalues

227 eigval0 = (psi.conj() * HX).sum(axis =1).real # HV

228

229 # residuals R = eig*X - HX

230 R = eigval0[:, None] * psi - HX # (ns, ngs)

231 residual = np.sqrt((R * R.conj()).sum(axis =1).real)

232 residual = np.maximum(residual , 2e-16) # Avoid division by 0

233

234 for i in range (50):

235 res_norm = 1.0 /residual

236 R *= res_norm[:, None]

237

238 # Precondition wavefunction based on g2 values

239 R = R / (1 + (self.pw.g_wfcs[ik]**2).sum(axis =1))

240

241 # H of R

242 HR = self.get_H_op(ik , R)

243

244 # Build H

245 H1 = np.zeros([ns*2, ns*2], dtype=complex)

246 if i == 0:

247 H1[:ns, :ns] = psi.conj() @ HX.T

248 else:

249 np.fill_diagonal(H1 , eigval0)

250

251 H1[:ns, ns:] = psi.conj() @ HR.T

252 H1[ns:, ns:] = R.conj() @ HR.T

253 H1[ns:, :ns] = H1[:ns , ns:]. conj().T

254

255 # Build S

256 S1 = np.zeros([ns*2, ns*2], dtype=complex)

257 S1[:ns, :ns] = np.diag ([1.+ 0.j] * ns)

258 S1[:ns, ns:] = psi.conj() @ R.T

259 S1[ns:, ns:] = R.conj() @ R.T

260 S1[ns:, :ns] = S1[:ns , ns:]. conj().T

261

262 # Average

263 H1 = 0.5 * (H1 + H1.T.conj())

264 S1 = 0.5 * (S1 + S1.T.conj())

265 lam_red , psi_red = linalg.eigh(H1 , S1)

266

267 # update eigvalue and psi

268 eigval1 = lam_red [:ns].real

269 psi = psi_red [:ns , :ns].T @ psi + psi_red[ns:, :ns].T @ R

270 HX = psi_red [:ns , :ns].T @ HX + psi_red[ns:, :ns].T @ HR

271 HX *= -1

272 psi *= -1

273

274 # get residual

275 R = eigval1[:, None] * psi - HX # (ns, ngs)

276 residual = np.sqrt(np.einsum(’ij,ij->i’, R, R.conj()).real)

277

186 Atomistic Simulation in Materials Modeling

278 # Check convergence

279 d_eigval = np.abs(eigval1 [:ns] - eigval0 [:ns]).sum()

280 #print(i, ’eigval ’, ik, eigval1 [:4], d_eigval , residual [0])

281 if d_eigval < 1e-6:

282 break

283

284 eigval0 = eigval1

285

286 return eigval1 , psi

287

288 def scf(self , max_iter =50, beta =0.7, de_tol =1e-6):

289 """

290 Self -consistent field iteration

291

292 Args:

293 max_iter: int , The maximum number of iterations.

294 beta: float , The mixing parameter.

295 de_tol: float , The energy tolerance

296 """

297 n_kpts = self.pw.n_kpts

298 ns = len(self.pw.psi_1d [0])

299 dvol = self.pw.model.volume / self.pw.num_grids

300

301 E = self.get_E_total ()

302 eigvals = np.zeros([n_kpts , ns])

303 print(f"SCF: Init {E:12.8f}")

304

305 for i in range(max_iter):

306 self.rho_old = self.pw.rho_r.copy()

307 self.E_old = E

308

309 # update eigenwavefunctions

310 for ik in range(self.pw.n_kpts):

311 psi = self.pw.psi_1d[ik]

312 eigval , psi = self.diag(psi , ik)

313 self.pw.psi_1d[ik] = self.pw.orthonormalize(psi)

314 eigvals[ik] = eigval

315

316 self.pw.get_psi_3d ()

317 self.pw.get_rho_r ()

318

319 # mixing rho

320 rho = self.pw.rho_r

321 rho = rho * beta + self.rho_old * (1-beta)

322 d_rho = np.sum(np.abs(rho - self.pw.rho_r)) * dvol

323 self.pw.rho_r = rho

324

325 # Update H

326 V_XC = self.get_V_XC ()

327 V_H = self.get_V_Hartree ()

328 self.V_XC = V_XC

329 self.V_Hartree = V_H

330 self.V_total = self.V_ps_loc.real + V_XC + V_H

331 E = self.get_E_total ()

332 dE = abs(E - self.E_old)

333 print(f"SCF{i:3d} dE:{dE:.8f} E:{E:.6f} drho:{d_rho :.6f}")

334 print(self)

335

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 187

336 if dE < de_tol:

337 print("\nSCF is Converged")

338 break

339

340 print(f"Final eigval {ns} states , {n_kpts} kpoints\n")

341 print(eigvals.T)

342

343 if __name__ == "__main__":

344 # Hamiltonian

345 ham = Hamiltionian(pw , psp)

346

347 V, eps = ham.get_V_XC ()

348 ham.V_XC , ham.eps_XC = V, eps

349 E1 = ham.get_E_XC ()

350

351 V, eps = ham.get_V_XC(backend="pylibxc")

352 ham.V_XC , ham.eps_XC = V, eps

353 E2 = ham.get_E_XC ()

354

355 print(f"E_XC_from_owncode: {E1:.6f}")

356 print(f"E_XC_from_pylibxc: {E2:.6f}")

The Hamiltonian class acts as the core computational module in DFT calculation. It
integrates contributions from pseudopotentials, electron density, and exchange-correlation
functionals, ensuring both numerical stability and efficiency for large systems.

In the current code, it generally implemented all required functions from the scratch
except the computation of ENN. ENN only needs to be calculated once as long as the
structure information is known. In order to focus on the DFT simulation, we put the
discussion of ENN in the Appendix C.

Before SCF iterations, it is useful to test the Hamiltonian using randomized wave-
functions. This preliminary test provides a baseline assessment of the initial energy state
and helps identify any potential implementation issues.

In order to check LDA-XC functional implementation, we compared the EXC results
from our own code with pylibxc results as discussed previously. The results are shown
as follows.

1 E_XC_from_owncode: -2.740286

2 E_XC_from_pylibxc: -2.740286

3

4 Hamiltonian (in Hartree)

5 E_Kinetic: 72.909390

6 E_ps_local: -9.555803

7 E_ps_nloc: 4.400774

8 E_Hartree: 0.964267

9 E_XC: -2.740286

10 E_NN: -8.397927

11 E_total: 57.580415

Due to the random nature of the wavefunctions, the calculated total energy is expected
to be high and non-physical. Such results can be cross-checked with other computational
codes to verify consistency.

12.6.5 Test Run and Results Analysis

The final test run demonstrates the SCF procedure for a cubic diamond silicon structure
with the following parameters:

188 Atomistic Simulation in Materials Modeling

• Energy cutoff (Ecut): 15 Ry

• K-point grid: 3× 3× 3 reduced to 4 irreducible points

• Pseudopotential parameters specified for silicon

• SCF Convergence Tolerance: 10−8 Hatree in energy

• Davidson Diagonalization

• A simple mixing with β=0.6 for electron density update in SCF

1 if __name__ == "__main__":

2

3 np.random.seed (42)

4

5 # System

6 lattice = 5.13155 * np.array ([[0, 1, 1], [1, 0, 1], [1, 1, 0]])

7 positions = np.array ([[0, 0, 0], [0.25 , 0.25, 0.25]])

8 model = Structure(lattice , positions)

9 print(model)

10

11 # Planewave (3*3*3 grid with symmetry reduction)

12 kpoints=np.array ([[0, 0, 0],

13 [1/3, 0, 1/3],

14 [1/3, 1/3, 1/3],

15 [1/3, 2/3, 1/3],

16])

17 kweights=np.array ([1., 6., 8., 12.]) /27.

18 occs = np.array ([1, 1, 1, 1, 0, 0])

19

20 pw = PlaneWaveBasis(model ,

21 Ecut =15.0,

22 kpoints=kpoints ,

23 kweights=kweights ,

24 occs=occs ,

25)

26 print(pw)

27 pw.random_guess ()

28 rho = pw.rho_r.sum() * pw.model.volume/pw.num_grids

29 print(f"Total Number of electrons: {rho}")

30

31 # Pseudopotential

32 psp = PspHgh(Z=4, rloc =0.44000000 ,

33 cloc=np.array ([-7.33610297 , 0, 0, 0]),

34 rp=np.array ([0.42273813 , 0.48427842]) ,

35 h=np.array ([[[5.90692831 , -1.26189397] ,

36 [-1.26189397 , 3.25819622]] ,

37 [[2.72701346 , 0.00000000] ,

38 [0.00000000 , 0.00000000]]]))

39 print(psp)

40

41 # Hamiltonian

42 ham = Hamiltionian(pw , psp)

43 ham.scf(200, beta =0.6, de_tol =1e-8)

The output is shown as follows,

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 189

1 Hamiltonian (in Hartree)

2 E_Kinetic: 72.909390

3 E_ps_local: -9.555803

4 E_ps_nloc: 4.400774

5 E_Hartree: 0.964267

6 E_XC: -2.740286

7 E_NN: -8.397927

8 E_total: 57.580415

9 SCF: Init 57.58041491

10 SCF 0 dE :68.08150840 E_total : -10.501093 drho :2.808660

11

12 Hamiltonian (in Hartree)

13 E_Kinetic: 3.656224

14 E_ps_local: -5.705757

15 E_ps_nloc: 1.866774

16 E_Hartree: 0.534247

17 E_XC: -2.454654

18 E_NN: -8.397927

19 E_total: -10.501093

20 SCF 1 dE :1.29022749 E_total : -9.210866 drho :1.192831

21 SCF 2 dE :0.79025388 E_total : -8.420612 drho :0.367443

22 SCF 3 dE :0.31072227 E_total : -8.109890 drho :0.147906

23 SCF 4 dE :0.12214773 E_total : -7.987742 drho :0.058041

24 SCF 5 dE :0.04778611 E_total : -7.939956 drho :0.024031

25 SCF 6 dE :0.01878599 E_total : -7.921170 drho :0.010074

26 SCF 7 dE :0.00748915 E_total : -7.913681 drho :0.004305

27 SCF 8 dE :0.00304355 E_total : -7.910637 drho :0.001868

28 SCF 9 dE :0.00124751 E_total : -7.909390 drho :0.000827

29 SCF 10 dE :0.00053608 E_total : -7.908854 drho :0.000372

30 SCF 11 dE :0.00021527 E_total : -7.908638 drho :0.000170

31 SCF 12 dE :0.00009563 E_total : -7.908543 drho :0.000081

32 SCF 13 dE :0.00003921 E_total : -7.908504 drho :0.000040

33 SCF 14 dE :0.00001715 E_total : -7.908486 drho :0.000021

34 SCF 15 dE :0.00000740 E_total : -7.908479 drho :0.000012

35 SCF 16 dE :0.00000318 E_total : -7.908476 drho :0.000007

36 SCF 17 dE :0.00000141 E_total : -7.908474 drho :0.000004

37 SCF 18 dE :0.00000061 E_total : -7.908474 drho :0.000003

38 SCF 19 dE :0.00000027 E_total : -7.908474 drho :0.000002

39 SCF 20 dE :0.00000013 E_total : -7.908473 drho :0.000001

40 SCF 21 dE :0.00000005 E_total : -7.908473 drho :0.000001

41 SCF 22 dE :0.00000003 E_total : -7.908473 drho :0.000001

42 SCF 23 dE :0.00000001 E_total : -7.908473 drho :0.000000

43 SCF 24 dE :0.00000001 E_total : -7.908473 drho :0.000000

44 SCF 25 dE :0.00000000 E_total : -7.908473 drho :0.000000

45

46 SCF is Converged

47

48 Hamiltonian (in Hartree)

49 E_Kinetic: 3.283452

50 E_ps_local: -2.598930

51 E_ps_nloc: 1.606884

52 E_Hartree: 0.636914

53 E_XC: -2.438866

54 E_NN: -8.397927

55 E_total: -7.908473

56 [6 states , 4 kpoints] in Hatree

57 -0.874910 -0.008945 -0.006864 -0.003463 0.194683 0.196131

58 -0.737348 -0.373191 -0.178099 -0.175285 0.073554 0.169547

190 Atomistic Simulation in Materials Modeling

59 -0.776267 -0.387064 -0.078894 -0.076918 0.131446 0.266729

60 -0.641776 -0.497143 -0.313150 -0.156857 0.135196 0.441730

Clearly, we found the total energy quickly decreases, achieving a physical ground state
energy of approximately -7.908473 Ha after 25 iterations, accompanied by the decay of
density change (dρ).

The final eigenvalues (6 states × 4 k-points) provide insight into the electronic struc-
ture of the system. In particular, the valence band maximum is located at (0, 0, 0) with
-0.003463 Hartree, and the conduction band maximum is located at (1/3, 0, 1/3) with a
value of 0.073554 Hartree, resulting in an indirect band gap of 1.0 eV. This closely repro-
duces the semiconducting behavior of silicon, although the band gap is underestimated
compared to the experimental value (1.1 eV). This discrepancy is typical for calculations
based on the LDA, which tends to underestimate band gaps due to the lack of exact
exchange contributions.

It is expected that using more advanced XC functionals, such as GGA or hybrid
functionals, can improve the accuracy of the computed band structure. These methods
incorporate gradient corrections or a fraction of exact exchange, addressing some of the
limitations inherent to LDA.

To implement improved functionals, the code needs to incorporate gradients of elec-
tron density and other advanced terms required by these functionals. This step opens
pathways for studying more complex materials and properties, including excited states
and response functions.

12.6.6 Limitation and Possible Extensions

While the current code successfully computes the electronic structure of a simple cubic
system, it is primarily designed for instructional purposes rather than production-level
simulations. Below, we outline its key limitations and suggest possible extensions to
improve its accuracy, robustness, and scalability:

1. XC Functional. Only the simple LDA functionals (Perdew-Zunger) are supported
in the current code. Therefore, the accuracy is limited for band structures and total
energy calculations.

2. Pseudopotential choice. The current implementation uses HGH pseudopotentials,
which are norm-conserving and optimized for efficiency in plane-wave basis sets.
While HGH pseudopotentials are suitable for many applications, the parameters
may need to be further tuned for different systems.

3. SCF Convergence. The SCF procedure may get stuck in cases with poor initial
guesses or when using systems with complex symmetry.

4. Limitation of simple mixing scheme. The implementation uses a linear mixing
scheme with a small mixing parameter (β). While this avoids divergence, it often
leads to slow convergence. Larger β values may cause overshooting and instability.

5. Modern codes include advanced preconditioning techniques and density mixing al-
gorithms (e.g., Pulay mixing) to accelerate convergence and avoid numerical insta-
bilities. These features are not included in the current implementation.

CHAPTER 12. DFT SIMULATION OF CRYSTALS WITH PLANE WAVES 191

6. The current implementation focuses primarily on total energy and band structures.
Advanced analysis, such as density of states (DOS), projected DOS (PDOS), and
charge density, are not included, despite that they can be easily implemented in
Python.

7. Performance. Modern DFT codes leverage MPI-based parallelization or GPU to
handle large-scale systems, significantly improving efficiency. Our implementation,
however, operates on a single node, limiting scalability.

Despite its simplicity, this implementation captures the core principles of DFT and
provides a foundational framework for exploring electronic structure calculations. With
Python’s flexibility and extensive libraries, it is well-suited for prototyping ideas, testing
algorithms, and educational purposes.

Future developments can focus on extending functionalities, improving computational
performance, and adopting modern algorithms to transform this code into a versatile re-
search tool. Researchers are encouraged to experiment with extensions, optimize parallel
performance, and explore new physical models to make the implementation even more
powerful.

12.7. Forces and Stress Tensors

So far, we have learned how to perform total energy calculations in DFT using the plane-
wave basis. However, knowing the ground-state energy alone is insufficient to determine
the equilibrium structure of a material. Ideally, we also need to optimize the geometry to
find the configuration that minimizes the total energy. This requires evaluating atomic
forces and stress tensors to guide structural relaxation.

12.7.1 Forces on Atoms

The Hellmann-Feynman theorem provides a simple and efficient way to calculate forces
on atoms in the system. For an atom at position RI , the force is computed as the negative
derivative of the total energy with respect to its position:

FI = −∂Etotal

∂RI

In the context of DFT, the total force consists of three contributions:

1. Electrostatic Force (Ionic Contribution): Due to the interaction between nuclei and
electrons.

2. Pseudopotential Contribution: Arises from the derivative of the non-local pseu-
dopotential terms.

3. Exchange-Correlation Contribution: Comes from variations in the exchange-correlation
potential.

Explicitly, the force can be expressed as:

FI = Felec
I + Fps

I + Fxc
I (12.29)

192 Atomistic Simulation in Materials Modeling

12.7.2 Stress Tensors

The stress tensor describes the internal pressure in the system and is particularly impor-
tant for lattice optimization and simulating systems under mechanical strain.

The stress tensor is computed as the derivative of the total energy with respect to a
strain tensor ϵ:

σαβ =
1

Ω

∂Etotal

∂ϵαβ

where α, β denote the Cartesian coordinates (e.g., x, y, z).
The stress tensor also includes kinetic energy, ionic interactions, Hartree potential,

exchange-correlation energy, and pseudopotential contributions.
Forces and stress tensors extend DFT calculations to structural optimization, enabling

accurate predictions of equilibrium geometries, elastic properties, and responses to exter-
nal pressures. The readers are welcome to further enable this capability to strengthen
the understanding of DFT simulation.

12.8. Summary

In this chapter, we introduced the fundamental principles and computational framework
for performing DFT simulations using the plane-wave pseudopotential method. We pro-
vided a step-by-step explanation of constructing the Hamiltonian, solving the Kohn-Sham
equations, and analyzing the resulting electronic band structure.

The example focused on a simple cubic diamond structure of silicon, demonstrating
how to set up the pseudopotentials, define the plane-wave basis, and implement the
SCF procedure to compute the ground state properties. By examining the valence and
conduction bands, we highlighted the ability of DFT to describe the electronic structure
and emphasized the role of exchange-correlation functionals in determining accuracy.

Despite the simplicity of this implementation, it captures the essential physics of sili-
con, including its semiconducting nature and band gap behavior. The example serves as
a foundation for further exploration, enabling future extensions to incorporate improved
functionals such as GGA and hybrid methods, as well as spin-polarized calculations and
parallelization techniques.

For realistic simulations, the reader are recommended to explore widely-used planewave
DFT packages such as Quantum ESPRESSO [34], VASP [35] based on Fortran, or DFTK.jl

[36] and PWDFT.jl [33] based on Julia, which include more sophisticated algorithms and
high-performance computing capabilities.

13. Phonon Calculation

In this chapter, we shift our focus from electronic structure to atomic motion. While the
computation of atomic vibrations was previously discussed in the context of molecular
dynamics simulations, our aim here is to explore vibrations from the perspective of lat-
tice dynamics. Specifically, we delve into the fundamental concepts of phonon theory,
starting with simple harmonic oscillators and progressing to more complex systems such
as diatomic chains and three-dimensional crystals.

Phonons, the quantized vibrational modes of a crystal lattice, are essential for un-
derstanding a wide range of material properties, including thermal conductivity, heat
capacity, and electron-phonon interactions. This chapter provides not only a theoretical
foundation for the study of vibrational properties in solids but also practical numerical
methods for calculating phonons in atomistic simulations. By bridging theory and com-
putational techniques, this chapter equips the reader with tools to analyze and predict
vibrational behavior in real-world materials.

13.1. A Simple Spring

In a simple spring with a force constant of k, Hooke’s Law states that the force F exerted
by a spring is proportional to the displacement x from its equilibrium position:

F = −kx

According to Newton’s second law, the net force F acting on a mass m causes an
acceleration a:

F = ma = m
∂2x

∂r2

Combining these two equations leads to the following differential equation that governs
the motion of the spring-mass system:

m
∂2x

∂r2
= −kx (13.1)

Obviously, the general solution is a cosine function. In its most common form, the
displacement x(t) can be expressed as:

x(t) = A cos(ωt+ ϕ),

where A is the amplitude, ω is the angular frequency, and ϕ is the phase constant.
Substituting this solution into Eq. (13.1) gives:

193

194 Atomistic Simulation in Materials Modeling

−mω2x(t) = −kx(t) → w =

√
k

m

Thus, the vibration frequency f is related to the force constant k and the mass m as:

f =
1

2π

√
k

m

13.2. The 1D Infinite Monoatomic Chain

Now let’s consider a relatively more complex system with a infinite number of identical
spring. This model, as shown in Fig. 13.1 helps in understanding a dispersion relation
that connects the vibrational frequency of the system to the wavevector q. This forms
the basis for understanding wave-like propagation of vibrations in a solid.

Consider a chain of identical atoms, each with mass m, connected by springs with
force constant k. In this model, the atoms are spaced a distance a apart. Each atom
oscillates around its equilibrium position.

un−2 un−1 un un+1 un+2

a

Figure 13.1: The schematic 1D monoatomic chain model.

Let un(t) represent the displacement of the n-th atom from its equilibrium position
at time t. For the n-th atom, the total force exerted on it comes from its interactions
with its nearest neighbors, i.e., the (n+ 1)-th atom and the (n− 1)-th atom.

According to Hooke’s Law, the force on the n-th atom due to its neighbors is:

Fn = −k [un(t)− un−1(t))− k (un(t)− un+1(t)]

= −k [2un(t)− un+1(t)− un−1(t)]

Using Fn = md2un

dt2
, the equation of motion for the n-th atom becomes:

m
d2un
dt2

= −k [2un(t)− un+1(t)− un−1(t)] (13.2)

13.2.1 Solution

Assume a wave-like solution,

un(t) = Aei(nqa−ωt) (13.3)

where A is the amplitude, q is the wavevector, ω is the angular frequency.
Substitute this into the equation of motion:

mω2Aei(nqa−ωt) = −k
[
2Aei(nqa−ωt) − Aei((n+1)qa−ωt) − Aei((n−1)qa−ωt)

]
Simplifying the right-hand side:

CHAPTER 13. PHONON CALCULATION 195

kA
(
2− eiqa − e−iqa

)
ei(nqa−ωt)

Using the identity eiqa + e−iqa = 2 cos(qa), we obtain:

mω2Aei(nqa−ωt) = −kA [2− 2 cos(qa)] ei(nqa−ωt)

Canceling common terms, we are left with:

mω2 = 2k [1− cos(qa)] (13.4)

So the general solution can be viewed as the following.

ω2(q) =
2k

m
[1− cos(qa)] =

4k

m
sin2(

1

2
aq) (13.5)

This will lead to

ω(q) = ±2

√
k

m
sin(

1

2
aq) (13.6)

It suggests that ω is a function of q and behaves in a periodic manner. Given that the
vibrational modes in the crystal do not depend on the sign of the wavevector q, forward
and backward traveling waves have the same magnitude of oscillation frequency. Hence,
we can rewrite it as

ω(q) = 2

√
k

m

∣∣∣∣ sin(
1

2
aq)

∣∣∣∣ (13.7)

13.2.2 Choice of q for Infinite and Finite systems

Eq. 13.3 suggests that the function is periodic. Hence we can limit the choice of q within
a periodic unit.

−π < qa ≤ π → −π
a
< q ≤ π

a
(13.8)

The above solution is suitable for a truly infinite long chain and q can take any values
within this interval. However, we might consider a solution with a finite number of atoms
N . This can be considered as a ring. So each atom still satisfy the previous motion
of equation. But this introduce another constraint. That is, after N repetitions, the
solution must be the same. After applying this boundary condition,

uN(t) = Aei(Nqa−ωt) = u0(t) = Ae−iωt → e−iNaq = 0

Combining eq. 13.8, q can only takes a series of integer values between −π/a and
π/a.

q =
2π

Na
· h, h = −N

2
+ 1,−N

2
+ 2, . . . ,

N

2
(13.9)

This distinction between infinite and finite chains is critical in understanding the
vibrational modes and their contributions to properties like heat capacity and thermal
conductivity.

196 Atomistic Simulation in Materials Modeling

ω(q)

−π
a

π
a

− π
2a

π
2a

2
√

k
m

q = 0

Backward wave Forward waveq ∈ [−π
a
, π
a
]

Figure 13.2: The ω − q relation for the 1D chain model.

13.2.3 Physical Insights

Fig. 13.2 illustrates the relation between ω and q. For an infinite system, q can take q can
take continuous values, and the solutions form a continuous band. For a finite system,
only discrete q values are allowed, which correspond to standing wave solutions that fit
within the finite chain’s boundary conditions.

Comparing the simple ring model and the 1D infinite chain model, we observe that
the vibrations form a q-dependent dispersion relation. For small q, sin(qa/2) ≈ qa/2,
so the frequency becomes approximately linear in q, i.e., ω(q) ∝ q, which is typical for
acoustic phonons. At the edge of the Brillouin zone (q = π/a), the frequency reaches its
maximum value.

What is the physical meaning of un(q, t) at the small and big q values? Recall that

un(q, t) = Aei(nqa−ωt)

It has both spatial and temporal characteristics.

• Spatial: The wave spreads in space with a wavelength λ = 2π/q, controlled by the
wavevector q.

• Energy: The energy of the wave is governed by the angular frequency ω, which
depends on q through the dispersion relation.

While λ(q) and E(ω) are separately controlled, the dispersion relation ties q and ω
together:

At q = 0, all un take the form of Aeiwt, meaning that all atoms are collectively
oscillate in the same phase with an infinitely long wavelength. In this case, the effective
force constant (k) becomes zeros since the collective translation dose not change the total
energy and each atom has a zero net force. This results in a zero frequency. When q is
increased from 0 to a small value, the wavelength becomes smaller, and one thus expect to
see an increasing of effective force constant and frequencies. This kind of wave is similar
to a low-frequency sound wave propagating through the material.

Large q corresponds to short wavelengths (λ ∼ a), where the wavelength approaches
the interatomic spacing. At q = π/a, un and un+1 has a different of half period. Hence, the
atoms oscillate completely out of phase with their neighbors, meaning the displacement
of one atom is maximally opposed by the displacement of its adjacent atoms. In this

CHAPTER 13. PHONON CALCULATION 197

mode, each atom experiences the full restoring force from the two springs (2k) attached
to it. This constructive addition of forces leads to the doubling of the restoring force and
a maximum frequency of ω = 2

√
k/m.

The behavior of un(q, t) reveals the interplay between spatial characteristics (λ) and
energy (ω). This understanding forms the foundation for analyzing phonon behavior in
crystals and their contribution to thermal and electrical properties.

13.3. The 1D Diatomic Chain Model

Let us now analyze a more complex 1D chain model consisting of two alternating types
of atoms, A and B, with masses mA and mB, respectively. As shown in Fig. 13.3
These atoms are connected by springs with a force constant k, and the distance between
neighboring atoms is a.

u2n−2 u2n−1 u2n u2n+1 u2n+2

A B A B A

a

Figure 13.3: The schematic 1D diatomic chain model.

13.3.1 Equation of Motions

The displacement of atom A in the 2nth position is denoted by u2n(t), and the displace-
ment of atom B is u2n+1(t). And the forces on each atom come from the interactions
with neighboring atoms. Using Hooke’s law and Newton’s second law, the equations of
motion for atoms A and B are:

mA
d2u2n
dt2

= −k (u2n − u2n−1)− k (u2n − u2n+1)

mB
d2u2n+1

dt2
= −k (u2n+1 − u2n)− k (u2n+1 − u2n+2)

13.3.2 Solutions

We again assume wave-like solutions for the displacements of atoms A and B:

u2n(t) = Aei[2nqa−ωt]

u2n+1(t) = Bei[(2n+1)qa−ωt])

Substituting these into the equations of motion, we get two coupled equations:

−mAω
2Aei[2nqa−ωt] = −2kAe−i[2nqa−ωt] + kB

(
eiqa − eiqa

)
ei(2nqa−ωt)

−mBω
2Bei([2n+1]qa−ωt) = −2kBe−i[(2n+1)qa−ωt] + kA

(
eiqa − eiqa

)
ei[(2n+1)qa−ωt]

198 Atomistic Simulation in Materials Modeling

Similar to the previous 1D chain model, we simplify these to:

−mAω
2A = −2kA+ kB (2 cos(qa))

−mBω
2B = −2kB + kA (2 cos(qa))

The above equations can be rewritten in matrix form, representing the dynamical
matrix of the system:(

mAω
2 0

0 mBω
2

)(
A
B

)
= k

(
2 −2 cos(qa)

−2 cos(qa) 2

)(
A
B

)
(13.10)

Reorganizing: (
mAω

2 − 2k 2k cos(qa)
2k cos(qa) mBω

2 − 2k

)(
A
B

)
= 0

This is a standard eigenvalue problem. For non-trivial solutions (A,B ̸= 0), the
determinant of the matrix must vanish:

det

(
mAω

2 − 2k 2k cos(qa)
2k cos(qa) mBω

2 − 2k

)
= 0

Expanding the determinant:(
mAω

2 − 2k
) (
mBω

2 − 2k
)
− (2k cos(qa))2 = 0 (13.11)

Simplify: (
mAω

2 − 2k
) (
mBω

2 − 2k
)

= 4k2 cos2(qa)

Expanding and isolating ω2:

mAmBω
4 − (2k(mA +mB))ω2 + 4k2

(
1− cos2(qa)

)
= 0

This is a quadratic equation in ω2:

ω4 +
2k(mA +mB)

mAmB

ω2 +
4k2

mAmB

sin2(qa) = 0

Hence, the final solution is

ω(±) =

√
k(mA +mB)± k

√
(mA +mB)2 − 4mAmB sin2(qa)

mAmB

. (13.12)

Given the factor of Aei[2nqa−ωt], we see that the

−π < 2aq ≤ π → π

2a
< q ≤ π

2a
(13.13)

CHAPTER 13. PHONON CALCULATION 199

q

ω(q)

0 π
2a

− π
2a

Acoustic Mode (ω−)

Optical Mode (ω+)

Figure 13.4: Dispersion relation for acoustic and optical modes (left) and schematic
vibrations (right).

13.3.3 Dispersion Relation and Mode Analysis

Fig. 13.4 illustrates the relation between ω and q according to eq. 13.12. In the diatomic
chain model, two distinct vibrational modes arise due to the existence of 2 distinguishable
atoms in the unit cell. The first solution (ω−) is very similar to that in a 1D atomic chain
model, which is called acoustic mode, in which the ω increases from 0 to q = ±π/(2a).
The second solution ω+, called optical mode, behaves differently. It has a maximum at
q = 0 and then decreases to q = ±π/(2a).

In order to understand their motions, let us evaluate the B/A ratio in both solutions
at q = 0,

mAω
2A = 2k (A−B cos(qa))→ B

A
=

mAω
2 − 2k

−2k cos(qa)
.

ω2
±(q = 0) =

k(mA +mB)± k(mA +mB)

mAmB

(13.14)

Hence (
B

A

)
−

=
0− 2k

−2k
= 1,(

B

A

)
+

=
2k(mA +mB)/mB − 2k

−2k
= −mA

mB

.

Therefore, the ω− mode corresponds to the case where the atoms A and B oscillate
almost in phase with each other, meaning their displacements are nearly synchronized.
This type of mode mimics lattice oscillate in phase or nearly in phase, thus related to
sound velocity and elastic constants. The behavior follows the mode as analyzed in the
monoatomic chain model.

In the ω+ mode, atoms A and B oscillate out of phase, meaning when A moves to
the left, B moves to the right, and vice versa. At q = 0 , the optical mode describes a
uniform out-of-phase oscillation of all atoms: (1) atom A moves in one direction, and atom
B moves in the opposite direction; (2) the displacement difference between neighboring
atoms is maximized, resulting in the strongest restoring force. When q becomes nonzero,

200 Atomistic Simulation in Materials Modeling

the wave introduces spatial variation in the relative displacements, reducing the restoring
force and thus the frequency (see Fig. 13.4).

According to the left panel of Fig. 13.4, the acoustic and optical branches are at their
maximum and minimum when q = π/2a,

ωacoustic max =

√
4k

mA +mB

, ωoptical min =

√
2k(mA +mB)

mAmB

If mA = mB = m, both values are
√

2k/m and the gap should be zero. Obviously,
this gap arises due to the difference in mass between the two alternating atoms (mA and
mB) and the interaction strength (k). This energy difference is a measure of how much
energy is required to excite optical phonons compared to acoustic phonons.

To help the readers to understand the behavior, one can vary the following script to
visualize the dispersions by playing with the parameters.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 # Parameters in arbitary unit

5 k = 1.0 # Force constant

6 mA = 1.0 # Mass of atom A

7 mB = 2.0 # Mass of atom B

8 a = 1.0 # Lattice constant

9

10 # Dispersion relation for the acoustic and optical phonon modes

11 def q2omega(q, k, mA , mB , a):

12 term1 = mA + mB

13 term2 = np.sqrt((mA + mB)**2 - 4 * mA * mB * np.sin(q*a)**2)

14 omega_acoustic = np.sqrt(k*(term1 - term2) / (mA * mB))

15 omega_optical = np.sqrt(k*(term1 + term2) / (mA * mB))

16 return omega_acoustic , omega_optical

17

18 # Generate q-values in the first Brillouin zone

19 q_values = np.linspace(-np.pi/a/2, np.pi/a/2, 100)

20

21 # Compute the corresponding phonon frequencies

22 omega_acoustic_values = []

23 omega_optical_values = []

24 for q in q_values:

25 omega_acoustic , omega_optical = q2omega(q, k, mA , mB , a)

26 omega_acoustic_values.append(omega_acoustic)

27 omega_optical_values.append(omega_optical)

28

29 # Plot the acoustic and optical phonon dispersion relations

30 plt.plot(q_values , omega_acoustic_values , label=’Acoustic Mode’)

31 plt.plot(q_values , omega_optical_values , label=’Optical Mode’)

32 plt.xlabel(r’Wavevector q’)
33 plt.ylabel(r’Angular frequency $\omega(q)$’)
34 plt.title(’Dispersion Relations in 1D Diatomic Chain’)

35 plt.legend ()

36 plt.show()

CHAPTER 13. PHONON CALCULATION 201

13.3.4 The Dynamical Matrix Approach

The method discussed in the previous section provides a straightforward way to analyze
the system through two linear equations. However, it can also be formulated in a more
systematic and generalized manner using the concept of the Dynamical Matrix.

From eq. 13.12, let us rewrite the equations of motion in matrix form :

k

(
2 −2 cos(qa)

−2 cos(qa) 2

)(
A
B

)
=

(
mAω

2 0
0 mBω

2

)(
A
B

)
Dividing each row by mA and mB, respectively, yields:

k

mAmB

(
2mB −2mB cos(qa)

−2mA cos(qa) 2mA

)(
A
B

)
= ω2

(
A
B

)
.

This matrix equation allows us to define the Dynamical Matrix D(q), which char-
acterizes the interactions between atoms A and B in the lattice:

D(q) =
k

mAmB

(
2mB −2mB cos(qa)

−2mA cos(qa) 2mA

)
(13.15)

The determinant of D(q) is(
k

mAmB

)2(
2mAmB − 2mA cos(qa)2mB cos(qa)

)
=

4k2

mAmB

sin2(qa) (13.16)

To compute the vibrational frequencies of the system, we solve the corresponding eigen-
value problem:

D(q)

(
A
B

)
= ω2

(
A
B

)
The dynamical matrix is a key concept in lattice dynamics and phonon theory. It

arises in the context of solving the equations of motion for atoms in a crystal lattice,
especially when dealing with harmonic vibrations in the lattice, such as in the 1D chain
model with two types of atoms (diatomic chain). The dynamical matrix relates the forces
on atoms to their displacements and encapsulates the vibrational properties of the system.
Using the dynamical matrix, one expect to systematically solve the vibrations for more
complex systems.

13.4. Extension to Realistic Systems

To compute phonon dispersions for a realistic 3D crystal, we need to extend the concepts
from the 1D chain to a 3D lattice, considering all the interactions between atoms in the
crystal unit cell.

In a 3D crystal, the phonon dispersion relation tells us how the phonon frequencies
(or energies) depend on the wavevector q in different directions of the Brillouin zone. If
there are N atoms in the unit cell, each atom has three degrees of freedom (x, y, z).
Therefore, the system has 3N degrees of freedom, leading to 3N phonon modes at each
q vector. The first 3 low-frequency vibrations where the entire unit cell moves in phase
are called acoustic phonon modes, whereas the rest 3N -3 higher-frequency modes where
the atoms in the unit cell vibrate relative to each other are called optical phonon modes.

202 Atomistic Simulation in Materials Modeling

To compute these modes, we essentially need to obtain a dynamical matrix in 3D
similar to the case of the 1D diatomic model like eq. 13.15.

Consider a crystal where atoms are displaced from their equilibrium positions due to
vibrations. Let us first consider atoms in one unit cell with the lattice vector of R. For
the atom i in the direction of α, the force should be related to the sum of spring forces
due to the displacement of other atoms. We first consider each displacement u of atom j
in the direction β. The total force act on uiα is the sum of all neighboring displacements
via a force constant Φij

αβ. It can be expressed as

miüiα(R, t) = −
∑
j,β

Φij
αβujβ(R, t) (13.17)

Now we also consider the atoms from other neighboring unit cells. Hence, there is a
need to sum over all lattice vectors R′.

miüiα(R) = −
∑
j,β,R′

Φij
αβ(R−R′)ujβ(R′), (13.18)

According to the Bloch Theorem, all displacement should satisfy,

u(R) = u(0)eik·R (13.19)

Hence, we assume uiα(R) can be written as plane waves, consistent with the period-
icity of the lattice:

uiα(R, t) =
1
√
mi

ei(q·R−ωt) ũiα(q),

ujβ(R′, t) =
1
√
mj

ei(q·R
′−ωt) ũjβ(q),

Substituting this into the equation of motion, we get:

−ω2ũiα(q) =
∑
j,β

∑
R′

Φij
αβ(R−R′)

1
√
mimj

eiq·(R
′−R)ũjβ(q). (13.20)

In the middle term, it is only related to R′ −R, we can simplify it to R, and define
it as the dynamic matrix.

Dij
αβ(q) =

1
√
mimj

∑
R

Φij
αβ(R)eiq·R (13.21)

With the introduction of D, The final expression becomes

−ω2ũiα(q) = D
∑
j,β

ũjβ(q). (13.22)

Group all equations to the matrix form:

D(q)ũ = ω2ũ. (13.23)

Solving this eigenvalue problem gives the squared frequencies ω2 and the eigenvectors
ũ, which represent the vibration modes.

CHAPTER 13. PHONON CALCULATION 203

13.4.1 Revisiting the Diatomic Chain Model

To understand the construction of the dynamical matrix D(q), let us revisit the diatomic
chain model. In this system, two atoms (A and B) are connected by a spring with an
equilibrium length of a. The potential energy depends on the deviation of the relative
displacement (uA−uB) from a, where uA and uB represent the displacements of atoms A
and B from their equilibrium positions, respectively. The total energy after displacements
can be expressed as,

U =
1

2
k
∑
n

[
(uAn − uBn)2 + (uBn − uA,n+1)

2

]
To construct the force constant matrix Φ, we compute the second derivatives of E

with respect to uA and uB at the n-th cell.

For atom A

Φnn
AA =

∂2U

∂u2An

=
∂2

∂u2An

[
1

2
k(uAn − uBn)2 +

1

2
k(uAn − uB,n−1)

2

]
= 2k

Φnn
BB =

∂2U

∂u2Bn

=
∂2

∂u2Bn

[
1

2
k(uBn − uAn)2 +

1

2
k(uBn − uA,n+1)

2

]
= 2k

Φnn
AB =

∂2U

∂uAn∂uBn

=
∂2

∂uAn∂uBn

[
1

2
k(uBn − uAn)2

]
= −k

Φnn
BA =

∂2U

∂uAn∂uBn

=
∂2

∂uB∂uA

[
1

2
k(uBn − uAn)2

]
= −k

The force constant matrix Φ at the same unit cell (R = 0) becomes:

Φ(0) =

(
2k −k
−k 2k

)
.

This can also be easily understood by simply counting the springs for each atom.
For atom A in the current cell, it is connected to two B neighbors (one is in the same
cell, the other is in the neighboring cell), so ΦAA is 2k that counts for these two springs,
and ΦAB is -k when counting the contribution due to the atom B in the same cell, and
ΦAB = -ke−iq×2a. Use the same reasoning, we get ΦBB is 2k, and ΦBA has -k due to
contribution of atom A in the same cell, and -keiq×2a due to the contribution of atom A
in the neighboring cell.

Thus, the force constant matrix from neighboring cells is:

Φneighbors =

(
0 −ke−i2qa

−kei2qa 0

)
.

And the total dynamical matrix is the sum of the contributions from the same unit
cell and neighboring cells, normalized by the atomic masses:

D(q) =
1

√
mAmB

(Φ(0) + Φneighbors) .

204 Atomistic Simulation in Materials Modeling

After combining all terms:

D(q) =

(
2k/mA −2k(1 + e2iqa)/

√
mAmB

−k(1 + e−2iqa)/
√
mAmB 2k/mB

)
=

k

mAmB

(
2mB −2

√
mAmB(1 + e2iqa)

−2
√
mAmB(1 + e−2iqa) 2mA

)
Although this representation looks different from Eq. 13.15, they share the same trace

and determinant.

The trace is the sum of diagonal elements as follows

2k

mA

+
2k

mB

.

The determinant is given by:(
2k

mA

)(
2k

mB

)
−
(
− 2k
√
mAmB

)2

(1 + eiq2a)(1 + e−iq2a) =
4k2

mAmB

sin2(qa).

Since both representations share these invariants, they yield the same eigenvalues, ω2,
after diagonalization. This confirms that the two forms are mathematically equivalent.

13.4.2 Special Case at q=0

Another important observation is that when |q|=0, D takes the following form after
normalization

D(0) =

(
1 −1
−1 1

)
(13.24)

This can be generalized to any higher dimensional system. For a given row i, the sum
of all elements Dij represents the net force acting on atom i due to displacements of all
other atoms. At q = 0 , the sum of these forces must be zero because of the symmetry
and force balance.∑

j

Dij(q = 0) = 0, and by symmetry,
∑
i

Dij(q = 0) = 0.

The above conditions ensure that the system exhibits translational invariance, mean-
ing the lattice remains stable under uniform translation. This invariance corresponds to
the presence of acoustic phonon modes with zero frequency at q = 0.

This structure can be generalized to any higher-dimensional system. In D(0), the rows
(and columns) sum to zero, reflecting the absence of net restoring forces under uniform
displacements. Hence, the q=0 matrix always includes zero eigenvalues corresponding to
the translational acoustic modes. For a 1D system, there is one such mode; for a 3D
system, there are three, corresponding to translations along x, y, and z. The remaining
eigenvalues in D(q = {0, 0, 0}) correspond to optical modes (if applicable) or nonzero
restoring forces due to relative displacements.

This feature can also be helpful to check if your numerical code implementation is
correct.

CHAPTER 13. PHONON CALCULATION 205

13.4.3 Application to the 3D System

One can follow the similar procedure to compute the dynamic matrix of a 3D system.
After D is known, one then needs diagonalize it to obtain the phonon frequencies ω(q)
for each mode as well as the eigenvector that denotes the vibrational directions.

Below are the steps to compute phonon in a 3D Crystal.

1. Get Atomic Positions [N , 3]: Obtain the positions of atoms in the unit cell and
lattice vectors that define the crystal structure.

2. Compute
∑

R Φij
αβ [3N, 3N,L]: These describe the interaction between atoms and

can either be obtained from ab initio calculations (using DFT) or from experimental
data. The force constants can be represented as a matrix that relates atomic dis-
placements to forces. The most straightforward way to displace each atom’s x, y, z
with a small amount and then compute the constant via the numerical gradient.
Given that atoms in a crystal are related by symmetry operation, one can take the
advantage of symmetry to reduce the number of displacements.

3. Construct Dij
αβ(q) [3N, 3N]. For each q in the Brillouin zone, construct the dynam-

ical matrix D(q) using the force constants.

4. Diagonalize Dij
αβ(q) [3N, 3N]. The eigenvalues of the matrix give the squared fre-

quencies ω2(q), and the eigenvectors describe the polarization vectors (atomic dis-
placements) for the phonon modes.

5. Compute the ω(q) dispersion.

Clearly, computing
∑

R Φij
αβ(R) is a key to construct the dynamic matrix. In a real

system,
∑

R Φij
αβ(R) needs to be calculated numerically. Namely, one perform a small

displacement on each degree of freedom and then evaluate the 2nd derivative on other
degrees in the same and neighboring unit cells. To ensure a numerical stability, it needs
to include as many neighboring cells as possible.

13.4.4 Phonon Density of States

In addition to the phonon dispersion relation ω(q), which provides the vibrational fre-
quencies as a function of wavevector q, it is essential to understand the phonon density of
states (DOS). The phonon DOS describes the distribution of vibrational states in energy
(or frequency) space and plays a crucial role in understanding thermal and transport
properties of materials, such as heat capacity and thermal conductivity.

The phonon DOS, g(ω), is effectively a histogram of the vibrational states across all
modes and q-points weighted by their frequencies. Mathematically, it is expressed as:

g(ω) =
1

Nq

∑
q,j

δ(ω − ωj(q)), (13.25)

where Nq is the total number of q-points sampled in the Brillouin zone, δ(ω−ωj(q)) is the
Dirac delta function, which ensures that only modes with frequencies near ω contribute.

In practical numerical calculations, the Brillouin zone is discretized into a finite grid
of q-points, and the delta function is approximated using a broadening function, such as
a Gaussian or Lorentzian. The procedure is as follows.

206 Atomistic Simulation in Materials Modeling

Algorithm 4 Phonon Density of States (DOS) Calculation

1: Initialize: Set g(ω)← 0.
2: Generate q Grid:
3: for each q in the grid do
4: Compute and diagonalize D(q).
5: Extract phonon frequencies ωj(q) for all branches j.
6: end for
7: for each q in the grid do
8: for each branch j do

9: g(ω)← g(ω) + 1√
2πσ

exp
(
− (ω−ωj(q))

2

2σ2

)
.

10: end for
11: end for
12: Normalize DOS: g(ω)← g(ω)/Nq

13.5. Application to FCC Argon

Let us consider a face-centered cubic (FCC) crystal of argon with a Lennard-Jones po-
tential. We aim to write a code to compute the dynamic matrix for this system. For
simplicity, we’ll consider only one atom in the primitive unit cell and take into account
only the first, second and third nearest neighboring atoms contributing to the force con-
stants.

13.5.1 System Setup

As shown in Fig. 13.5, an FCC lattice with a unit length a has the primitive lattice
vectors in the real and reciprocal space defined as:

a1 =
a

2
(0, 1, 1), b1 = 2π

a2 × a3

a1 · (a2 × a3)
=

2π

a
(1,−1, 1) ,

a2 =
a

2
(1, 0, 1), b2 = 2π

a3 × a1

a1 · (a2 × a3)
=

2π

a
(1, 1,−1) ,

a3 =
a

2
(1, 1, 0), b3 = 2π

a1 × a2

a1 · (a2 × a3)
=

2π

a
(−1, 1, 1) .

Each atom at position R interacts with its neighbors at positions R+ δ, where δ are
the vectors to the neighbors.

• The 1st-nearest neighbors are a/2× {(±1, 0,±1), (0,±1,±1), (±1,±1, 0)}.

• The 2nd-nearest neighbors are a/2× {(±2, 0, 0), (0,±2, 0), (0, 0,±2)}.

• The 3rd-nearest neighbors are a/2× {(±1,±1,±2), (±1,±2,±1), (±2,±1,±1)}.

13.5.2 From Force Constants to Dynamical Matrix

According to Lennard-Jones potential, the total energy is

CHAPTER 13. PHONON CALCULATION 207

a1

a2

a3

Figure 13.5: The schematic of FCC lattice. To enhance the clarity, the corner and face
centered atoms are shown in different colors.

U(r) =
∑
ij

4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
,

where:

• ε is the depth of the potential well.

• σ is the finite distance at which the inter-particle potential is zero.

• r is the distance between two atoms.

For a given ij pair, the 1st and 2nd derivatives of energy with respect to the distance
are

∂U

∂r
= 4ϵ

(
−12

σ12

r13
+ 6

σ6

r7

)
.

∂2U

∂r2
= 4ϵ

(
156

σ12

r14
− 42

σ6

r8

)
.

The force constant matrix elements for the interaction between two atoms via a pair-
wise potential U(r) are given by:

Φαβ =
∂2U

∂rα∂rβ
.

This can be expressed in terms of the total derivatives dU/dr and d2U/dr2 as:

Φαβ = r̂αr̂β
d2U

dr2
+ δαβ

1

r

dU

dr
− r̂αr̂β

1

r

dU

dr
,

where:

• r̂α and r̂β are components of the unit vector r̂.

• δαβ is the Kronecker delta (1 if α = β, 0 otherwise).

For the diagonal terms (α = β):

Φαα = r̂2α
d2U

dr2
+ (1− r̂2α)

1

r

dU

dr
.

208 Atomistic Simulation in Materials Modeling

For the off-diagonal terms (α ̸= β):

Φαβ = r̂αr̂β

(
d2U

dr2
− 1

r

dU

dr

)
.

When looping over the neighbors for each atom i, we add Φij
αβe

iq·R to Dij
αβ(q), which

count the force contribution from the neighboring atoms. In addition, one must take into
account that per force is equally applied to each atom i, j. Hence, the force contribution
−Φij

αβ should be added to Dii
αβ(q) to reflect the force contribution from the self-atom with

a phase factor of 1 since R = (0, 0, 0).

13.6. Python Implementation

The following code calculates the phonon dispersion relation for an FCC Argon by evalu-
ating the dynamical matrix at different wavevectors q, accounting for contributions from
the nearest neighbors in the lattice.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 epsilon = 0.0103 # eV

5 sigma = 3.4 # Angstrom

6 mass = 39.948 # a.u

7 a = 5.3 # Lattice constant (Angstrom)

8 q_basis = 2* np.pi / a * np.array ([[1, -1, 1], [1, 1, -1], [-1, 1, 1]])

9

10 # Nearest neighbors for FCC lattice

11 NN1 = np.array([

12 [1, 1, 0], [-1, -1, 0], [-1, 1, 0],

13 [1, -1, 0], [1, 0, 1], [-1, 0, -1],

14 [-1, 0, 1], [1, 0, -1], [0, 1, 1],

15 [0, -1, -1], [0, -1, 1], [0, 1, -1]]) * a / 2

16

17 NN2 = np.array([

18 [1, 0, 0], [-1, 0, 0], [0, 1, 0],

19 [0, -1, 0], [0, 0, 1], [0, 0, -1]]) * a

20

21 NN3 = np.array([

22 [1, 1, 2], [-1, -1, -2], [1, 2, 1],

23 [-1, -2, -1], [2, 1, 1], [-2, -1, -1],

24 [1, -1, 2], [-1, 1, -2], [1, 2, -1],

25 [-1, -2, 1], [2, 1, -1], [-2, -1, 1],

26 [-1, -1, 2], [1, 1, -2], [-1, 2, -1],

27 [1, -2, 1], [2, -1, -1], [-2, 1, 1],

28 [1, 1, -2], [-1, -1, 2], [1, -2, 1],

29 [-1, 2, -1], [-2, 1, 1], [2, -1, -1]]) * a / 2

30

31 # Compute derivatives

32 def lj_derivatives(r):

33 sr6 = (sigma / r)**6

34 sr12 = sr6 **2

35 dE_dR = 4 * epsilon * (12 * sr12 - 6 * sr6) / r

36 d2E_dR2 = 4 * epsilon * (156* sr12 - 42* sr6) / r**2

37 return dE_dR , d2E_dR2

38

CHAPTER 13. PHONON CALCULATION 209

39 # Compute force constants

40 def fc(r, r_hat , dE_dR , d2E_dR2 , alpha , beta):

41 product = r_hat[alpha] * r_hat[beta]

42 if alpha == beta: # Diagonal terms

43 return product * d2E_dR2 + (1 - product) * dE_dR / r

44 else: # Off -diagonal terms

45 return product * (d2E_dR2 - dE_dR / r)

46

47 # Compute the dynamical matrix for a single atom

48 def compute_dynamical_matrix(q, nearest_neighbors , mass):

49 d_matrix = np.zeros ((3, 3), dtype=complex)

50 for neighbor in nearest_neighbors:

51 r = np.linalg.norm(neighbor)

52 r_hat = neighbor / r

53 phase = np.exp(1j * np.dot(q, neighbor))

54 dE_dR , d2E_dR2 = lj_derivatives(r)

55

56 for alpha in range (3):

57 for beta in range (3):

58 fc_value = fc(r, r_hat , dE_dR , d2E_dR2 , alpha , beta)

59 # Neighbor contribution

60 d_matrix[alpha , beta] += phase * fc_value

61 # self -interation

62 d_matrix[alpha , beta] -= fc_value

63 return d_matrix / mass

64

65 # Compute the phonon dispersion from (0, 0, 0) to (1, 0, 0)

66 NN = None

67 qxs = np.linspace (1.0, 0.0, 20)

68 freqs = np.zeros ([4, len(qxs), 3])

69 colors = [’r’, ’b’, ’g’]

70 for i, NNs in enumerate ([NN1 , NN2 , NN3]):

71 # Setup the truncation of neighbors

72 if NN is None:

73 NN = NNs

74 else:

75 NN = np.vstack ((NN , NNs))

76

77 # Compute vibrational frequencies

78 for j, qx in enumerate(qxs):

79 q0 = np.array([qx , 0, 0]) @ q_basis

80 d_matrix = compute_dynamical_matrix(q0, NN, mass)

81 eigenvalues , eigenvectors = np.linalg.eig(d_matrix)

82 freq = np.sqrt(np.abs(eigenvalues.real)) / (2*np.pi) * 241.7991

83 freq.sort()

84 freqs[i, j, :] += freq

85

86 plt.plot(qxs , freqs[i, :, 0], ’-.’, c=colors[i],

87 label=f"ω ({len(NN)} Neighbors)")

88 plt.plot(qxs , freqs[i, :, 1], ’-o’, c=colors[i])

89 plt.plot(qxs , freqs[i, :, 2], ’-d’, c=colors[i])

90 plt.ylabel(’Frequency (THz)’)

91 plt.legend ()

92 plt.show()

The initial section defines the key parameters, including the Lennard-Jones potential
parameters for Argon (ϵ, σ), the FCC lattice constant (a = 5.3 Å), mass values, and
the reciprocal lattice basis vectors for the FCC lattice, which are essential for computing

210 Atomistic Simulation in Materials Modeling

wavevectors.
It then specifies the nearest neighbors (NN) for the FCC lattice:

• NN1: 12 first nearest neighbors at a distance of
√

2/2× a.

• NN2: 6 second nearest neighbors at a distance of a.

• NN3: 24 third nearest neighbors at a distance of
√

5/2× a.

Three functions are implemented to handle the calculations:

• lj derivatives: Computes the first (∂E/∂r) and second derivatives (∂2E/∂r2) of
the Lennard-Jones potential with respect to the interatomic distance r.

• fc: Calculates contributions to the force constant matrix elements for given direc-
tions (indices α and β).

• compute dynamical matrix: Iterates over all neighbors to compute the contri-
butions to the dynamical matrix D(q).

In the main routine, the phonon frequencies are computed for 20 evenly spaced q-
points from the (0, 0, 0] to (1, 0, 0) direction in reciprocal space. To investigate the role
of neighbor contributions to the dynamical matrix, the program iterates over the nearest
neighbors (NN1, NN2, and NN3) to calculate their cumulative effects on the dispersion
relation. For each q-point, the dynamical matrix is constructed using all included neigh-
bors up to the current level (NN), and eigenvalues are extracted to determine the phonon
frequencies.

Fig. 13.6 illustrates the calculated phonon dispersion curves, revealing three acoustic
branches: two degenerate transverse acoustic (TA) modes with a smaller dispersion and
one longitudinal acoustic (LA) mode with a larger dispersion. The results are consistent
with the expected behavior for a FCC lattice.

Additionally, as the number of included neighbors increases from NN1 to NN2 and
NN3, only minor modifications to the dispersion curve are observed. This behavior aligns
with the short-range nature of the LJ potential, which contributes negligibly at larger
distances. As shown in Fig. 13.7, the derivative values of the LJ potential (both ∂E/∂r
and ∂2E/∂r2) rapidly decrease with increasing r, emphasizing the dominance of first-
neighbor interactions in determining the vibrational properties of the lattice.

To understand the physical meaning of each mode. One can directly check the D
values at different q vectors and compute the corresponding eigenvectors and eigenvalues.
Below is a case for q=(0, 0, 0.1) near zero.

1 # Compute an indivudal q point

2 q = np.array ([0, 0, 0.1])

3 D = compute_dynamical_matrix(q, NN, mass)

4 eig_freqs , eig_vecs = np.linalg.eigh(D, UPLO=’U’)

5 eig_freqs = np.sqrt(eig_freqs.T/(2*np.pi) * 241.7991) # THz

6

7 print("Dynamical Matrix (Real Part):")

8 for row in D.real:

9 formatted_row = " ".join(f"{value :8.4f}" for value in row)

10 print(formatted_row)

11

12 for eig_freq , eig_vec in zip(eig_freqs , eig_vecs.T):

13 vec = " ".join(f"{value :8.4f}" for value in eig_vec.real)

14 print(f"Frequency: {eig_freq :.6f} => Eigenvector: {vec}")

CHAPTER 13. PHONON CALCULATION 211

0.0 0.2 0.4 0.6 0.8 1.0
qx

0

1

2

3

4

Fr
eq

ue
nc

y
(T

H
z)

 (12 Neighbors)
 (18 Neighbors)
 (42 Neighbors)

Figure 13.6: The calculation dispersion relation along (qx, 0, 0) for FCC argon using
different cutoff distances.

√
2
2
a

√
4
2
a

√
5
2
a

−1

0

1

2

3

4
·10−2

D
er

iv
at

iv
es

∂E/∂r

∂2E/∂r2

Figure 13.7: The radial dependence of LJ derivative values for Argon.

212 Atomistic Simulation in Materials Modeling

The outputs are the following.

Dynamical Matrix (Real Part):

0.0001 0.0000 -0.0000

0.0000 0.0001 0.0000

-0.0000 0.0000 0.0002

Frequency: 0.066978 => Eigenvector: 0.7071 -0.7071 0.0000

Frequency: 0.066978 => Eigenvector: 0.7071 0.7071 0.0000

Frequency: 0.091297 => Eigenvector: 0.0000 0.0000 1.0000

Clearly, there are three distinct vibrational modes. Among these, the mode with the
highest frequency (0.09 THz) corresponds to a vibration with the eigenvector (0, 0, 1)
aligned along the wave vector. This is known as the longitudinal acoustic (LA) mode.
The other two modes have eigenvectors perpendicular to the wave vector, and they are
identified as transverse acoustic (TA) modes.

When two atoms are present in the unit cell, a similar vibrational pattern emerges.
In addition to the acoustic modes, optical modes appear due to the relative motion
between atoms in the unit cell. Specifically, there is one longitudinal optical (LO) mode,
where vibrations align with the wave vector, and two transverse optical (TO) modes,
where vibrations are perpendicular to it. These optical modes typically occur at higher
frequencies compared to the acoustic modes and reflect the internal dynamics of the unit
cell.

For a cross-validation, one can use the ASE package [37] to repeat the simulation for
a few representative q points as listed in Table 13.1. Clearly, the results are very similar.
The slight discrepancy is likely due to the use of numerical derivatives in ASE.

Table 13.1: Comparison of results from the ASE code and this work.

q ASE (7× 7× 7) NN1 NN2 NN3

(0, 0, 0) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00)

(1
2
, 0, 0) (2.11, 2.11, 4.59) (2.42, 2.42, 4.67) (2.28, 2.28, 4.61) (2.21, 2.21, 4.58)

(1
2
, 1

2
, 0) (3.16, 3.16, 4.61) (3.37, 3.37, 4.69) (3.37, 3.37, 4.69) (3.30, 3.30, 4.66)

(1
2
, 1

2
, 1

2
) (2.11, 2.11, 4.59) (2.42, 2.42, 4.67) (2.28, 2.28, 4.61) (2.21, 2.21, 4.58)

13.7. Summary and Outlook

Through the study of monoatomic and diatomic chain models, we uncovered the funda-
mental concepts of phonon dispersion and the emergence of acoustic and optical modes.
The introduction of the dynamical matrix allowed us to generalize these ideas to more re-
alistic three-dimensional systems, enabling the calculation of phonon frequencies and the
density of states. For those interested in phonon and vibrational analysis, following the
procedures outlined in this chapter offers valuable insights into the fundamental aspects
of lattice dynamics. For modern applications, the Python library phonopy [38] provides
a powerful framework for automating phonon calculations, streamlining the analysis of
vibrational properties in a wide range of materials.

CHAPTER 13. PHONON CALCULATION 213

To illustrate the concept, we primarily focused on the supercell approach to collect
contributions to the force constants. This method is effective when interatomic forces de-
cay rapidly with increasing distance. However, for systems where long-range interactions
or subtle force contributions are significant, this approach may lose accuracy. In such
cases, more accurate methods, such as linear response theory, can provide enhanced preci-
sion by directly computing the dynamical matrix without relying on finite displacements.
For a detailed explanation of this approach, please refer to Baroni et. al [39].

One limitation of the approaches discussed lies in the reliance on the harmonic ap-
proximation, which assumes that atomic displacements remain small. However, this ap-
proximation breaks down in cases where anharmonic effects become significant, such as
at high temperatures or in light systems with strong lattice vibrations. In such scenarios,
higher-order terms must be considered to account for anharmonicity.

The insights gained here form the basis for studying more complex phenomena, such
as heat transport, electron-phonon interactions, and optical properties of materials. By
combining theoretical approaches with numerical techniques like Brillouin zone sampling
and dynamical matrix diagonalization, we establish a versatile framework for exploring
vibrational behavior across a wide range of materials. This understanding is crucial for
advancing applications in thermoelectrics, semiconductors, and other areas of material
research.

214 Atomistic Simulation in Materials Modeling

14. Representing Local Atomic En-
vironment

In atomic and molecular systems, the local environment around a particle plays a cru-
cial role in determining its physical properties. Understanding how atoms or molecules
are arranged in the 3D space provides insights into the material’s structural character-
istics, phase transitions, and dynamic behaviors. The local atomic environment can be
described through various mathematical tools. In the previous chapter, we introduced
Radial distribution function (RDF) as a fundamental tool for describing the local struc-
ture in a system of particles. It gives the probability of finding a particle at a distance r
from a reference particle, normalized by the average particle density, while the RDF is a
powerful tool for capturing the radial distribution of particles, it is unable to describe an-
gular correlations between particles. As a result, systems with orientational order, such as
liquid crystals or crystals with complex angular symmetries, cannot be fully characterized
by the pair distribution function alone. In this chapter, we will explore the descriptors
that can deal with both radial and angular information with mathematical rigor.

14.1. Orientational Order Parameter

To capture the missing angular information in systems with orientational order, we need
to introduce additional descriptors, such as the orientational order parameter. This
parameter quantifies the degree of angular ordering among neighboring particles. Unlike
RDF, which focuses solely on the radial distances, orientational order parameters provide
insights into how the bonds between particles are aligned in space. These parameters are
particularly useful in distinguishing between phases with different degrees of symmetry,
such as solid, liquid, or nematic phases.

14.1.1 Orientational Order in a 2D System

Let’s first consider a two-dimensional system, where the angular relationships between
a particle and its nearest neighbors can provide critical information about the system’s
structure. To quantify these angular relationships, the bond orientational order parameter
ψm has been introduced to measures how the bonds between a particle and its neighbors
are aligned with respect to a reference axis [40]. The order parameter ψm is given by the
following equation:

ψm =
1

N

N∑
j=1

eimθj . (14.1)

215

216 Atomistic Simulation in Materials Modeling

In this expression, N is the number of neighbors around a given particle, θj is the angle
formed between the bond connecting a particle to its neighbor j and some reference axis,
and m is the symmetry index. For example, m = 6 is used for systems with hexagonal
symmetry.

The value of ψm is a complex number, and it will depend on the degree of angular
ordering in the system. To evaluate the numerical behaviors of ψm(i) values, let us
examine how they represent a simple geometry object of a cluster where the center atom
is surrounded by 3 neighboring atoms with a nearly center distance ***.

Figures ***.

• Magnitude:

• Phase: The phase angle of ψm(i) indicates the orientation of the bond order relative
to the reference direction.

Hence, we can summarize that ϕm-series attempts to reflect the correlation between
the target geometry and reference geometry (i.e., ****). The resulting magnitude |ψm(i)|
measures how well the local arrangement of neighbors conforms to an m-fold symmetric
structure. If the neighbors are perfectly arranged in a hexagonal pattern, |ψ6(i)| will
be close to 1. In disordered regions, the value of |ψ6(i)| will be closer to 0. On the
other hand, the phase of ψm(i) indicates the orientation of the bond order relative to the
reference direction.

Thus, by examining how ψm evolves with temperature, pressure, or density, re-
searchers can gain insights into the structural transformations occurring in the system.

14.1.2 Extension to 3D: Neighbor Density Function

In the real-world scenarios, we are primarily dealing with 3D systems. How can we extend
the approach we discussed for 2D to 3D? This extension involves additional complexity
because, with the introduction of an extra dimension, the alignment of atoms can no
longer be described by a single variable, as in 2D. To capture this alignment in 3D, we
need to be more rigorous with our mathematical description.

We define the Atomic Neighbor Density Function to describe the spatial distri-
bution of atoms around a reference atom within a cutoff radius rc. The atomic neighbor
density function is expressed as:

ρ(r) =

ri≤rc∑
i

δ(r− ri) (14.2)

Here, δ(r − ri) is the Dirac delta function, which ensures that the function only
contributes when a neighboring atom is located at ri, and the summation runs over all
neighboring atoms within the cutoff radius rc.

14.1.3 Expansion on the Spherical Harmonics

To capture the angular distribution of neighboring atoms, we can transform the spatial
neighbor density function into another domain, similar to how the Fourier transform con-
verts a time-domain signal into its frequency components. In this case, we are interested
in projecting the atomic density distribution onto the unit sphere to study the angular
arrangement of atoms.

CHAPTER 14. REPRESENTING LOCAL ATOMIC ENVIRONMENT 217

A popular choice for the basis functions on the unit sphere is spherical harmonics,
which are functions defined on the surface of a sphere. Therefore, we can expand the
neighbor density function ρ(r) as a series of spherical harmonics on the 2-sphere:

ρ(r) =
+∞∑
l=0

+l∑
m=−l

clmYlm(r̂) (14.3)

In this expression:

• Ylm(r̂) are the spherical harmonics, which form a complete orthonormal basis on
the sphere.

• r̂ is the normalized radial vector, with a unit length of 1.

• clm are the expansion coefficients, which describe the contribution of each spherical
harmonic mode to the overall distribution.

The clm coefficients can be computed by projecting the neighbor density function onto
the spherical harmonics:

clm = ⟨Ylm(r̂)|ρ(r)⟩ =

∫
Y ∗
lm(r̂)ρ(r)d3r =

ri≤rc∑
i

Ylm(r̂i) =

ri≤rc∑
i

NeimϕPlm cos(θ) (14.4)

Here, l denotes the total angular momentum, m represents its projection along a cho-
sen axis, and Plm is the associated Legendre Polynomial. The Ylm(r̂) can be decomposed
into a complex exponential and associated Legendre polynomials. From this expression
one can clearly see a strong similarity between ψm in the 2D and clm in the 3D. Indeed,
clm is an extension of ψm by adding the associated Legendre Polynomial Plm to account
for the distribution of angular momentum. Hence, the clm coefficients are complex num-
bers that capture the angular characteristics of the neighbor density. Similar to ψm,
these coefficients are sensitive to rotations of the system. If the system is rotated, the
values of clm will change, which is undesirable when trying to describe the local atomic
environment in a way that is independent of orientation.

In practical applications, we aim to find a representation of the local atomic envi-
ronment that is, similar to RDF, both real-valued and invariant under translations and
rotations of the system. However, they should go beyond the pairwise two-body, ***
reflect the three-body, four-body and even manybody distributions.

14.1.4 Rotation-Invariant Parameters

To address this challenge, Steinhardt introduced bond order parameters in 1983 [41],
which use second- and third-order combinations of the expansion coefficients clm to quan-
tify the order in liquids and glasses. These bond order parameters are rotationally in-
variant, making them useful for characterizing local atomic environments without being
affected by the orientation of the system.

The bond order parameter pl is defined as:

pl =
+l∑

m=−l

clmc
∗
lm (14.5)

218 Atomistic Simulation in Materials Modeling

14.1.5 Applications and Limitations

Note that this was called Ql in the original paper [41]. However, it was later found that
bond order parameter is closely related to the power spectrum. Hence, we will call it
pl from now on. In signal processing, the power spectrum describes how the power of a
signal is distributed across different frequency components. Similarly, in this context, pl
measures the power of the neighbor density when projected onto the angular frequency
components represented by l. In general, the power spectrum pl is the Fourier transform
of the autocorrelation function, and it provides a frequency-domain representation of the
dependencies captured by the autocorrelation.

When analyzing the pl series for different structures, Steinhardt found that p4 and
p6 were particularly useful in distinguishing between different crystal structures such as
body-centered cubic (bcc), face-centered cubic (fcc), hexagonal close-packed (hcp), and
icosahedral arrangements. These parameters have proven to be very useful for analyzing
MD simulations, particularly when identifying structural differences between solids, liq-
uids, and glasses. For instance, LAMMPS allows the computation of bond-orientational
order parameters in several kinds of styles.

While the pl series is useful to capture the feature on angular distribution, it does not
contain any radial information. Additionally, it assumes a neighbor density in the form of
a Dirac delta function. This may not be good for the purpose of measuring the similarities
between two environments. Nevertheless, the idea of using spherical harmonics and power
spectra to describe the local atomic environment has inspired many subsequent works and
is still widely used in computational materials science today.

14.2. Manybody descriptors

In modern computational materials science and atomistic simulations, understanding
the local atomic environment goes beyond simple pairwise interactions. Describing how
groups of atoms are collectively arranged, including both radial and angular components,
is critical for capturing the structural complexity of systems such as liquids, glasses, and
complex crystals. Manybody descriptors provide a mathematical framework to represent
these arrangements, offering a more detailed picture of the atomic environment than
traditional pair distribution functions or angular descriptors alone.

Manybody descriptors, such as the power spectrum and bispectrum, help quantify the
relative positions of multiple atoms in a way that is invariant to rotation and translation.

14.2.1 Radial Dependent Power Spectrum Descriptor

In practical applications, we often care about how atoms are spatially arranged in both
radial and angular space. While previous approaches focused primarily on the angu-
lar distribution, the introduction of radial information allows for a more comprehensive
description of the local atomic environment.

In 2012, Bartók et al. introduced an improved manybody descriptor that explicitly
incorporates both radial and angular components [42]. This approach overcomes the
limitation of describing neighbor density with a Dirac delta function by replacing the
delta function with a Gaussian function of limited width α. This smoothing allows for a
more realistic representation of how atoms are distributed around a reference atom.

The modified neighbor density function is given by:

https://docs.lammps.org/compute_orientorder_atom.html
https://docs.lammps.org/compute_orientorder_atom.html

CHAPTER 14. REPRESENTING LOCAL ATOMIC ENVIRONMENT 219

ρ′(r) =

ri≤rc∑
i

e(−α|r−ri|2) =

ri≤rc∑
i

e−α(r2+r2i)e2αr·ri (14.6)

Expanding the exponential of a dot product in spherical coordinates:

e2αr·ri = e2αrricos(γ) = 4π
∞∑
l=0

l∑
m=−l

Il(2αrri)Y
∗
lm(r̂i)Ylm(r̂). (14.7)

In which, we used the general formula addition theorem for spherical harmonics,

ezcos(γ) = 4π
∞∑
l=0

l∑
m=−l

Il(z)Y ∗
lm(r̂i)Ylm(r̂). (14.8)

This expression can be further expanded as:

ρ′(r) =

ri≤rc∑
i

∑
lm

4πe−α(r2+r2i)Il(2αrri)Y
∗
lm(r̂i)Ylm(r̂i), (14.9)

where the first part Il(2αrri) is the modified spherical Bessel function of the first kind
(governed by 2αrri), providing the radial dependence, and the second part captures the
angular dependence of the vectors r and ri.

Bartók also introduced a set of polynomials, gn(r), which help describe the radial
component in a more refined way:

ϕα(r) = (rc − r)α+2/Nα

where Nα is a normalization factor given by:

Nα =

√∫ rc

0

r2(rc − r)2(α+2)dr

These polynomials are orthonormalized to ensure that the radial functions gn(r) form
a basis. The orthonormalization process is performed through linear combinations of
ϕα(r), and the coefficients are obtained from

gn(r) =
nmax∑
α=1

Wnαϕα(r),

where W is constructed from the inverse square root of the overlap matrix S,

Sαβ =

∫ rc

0

r2ϕα(r)ϕβ(r)dr

=

√
(2α + 5)(2α + 6)(2α + 7)(2β + 5)(2β + 6)(2β + 7)

(5 + α + β)(6 + α + β)(7 + α + β)

As discussed in the previous DFT chapter with Gaussian basis set, the overlap matrix
describes how different radial functions overlap with each other and ensures that the final
radial basis functions gn(r) are orthonormal.

220 Atomistic Simulation in Materials Modeling

The neighbor density function ρ′(r) can then be expanded in terms of both the radial
basis gn(r) and the spherical harmonics:

cnlm = ⟨gn(r)Ylm(r̂)|ρ′(r)⟩ (14.10)

=

∫
d3rgn(r)Ylm(r̂))

∑
ri≤rc

∑
l′m′

4πe−α(r2+r2i)Il′(2αrri)Y
∗
l′m′(r̂i)Yl′m′(r̂)

When integrating over the angular variables r̂, only the terms with l′ = l and m′ = m
will survive, due to orthogonality.

cnlm = 4π

ri≤rc∑
i

Y ∗
lm(r̂i)

∫ rc

0

r2gn(r)e−α(r2+r2i)Il(2αrri)dr (14.11)

= 4π

ri≤rc∑
i

e−αr2i Y ∗
lm(r̂i)

∫ rc

0

r2gn(r)e−αr2Il(2αrri)dr

Finally, the rotation-invariant power spectrum is obtained by combining these
expansion coefficients:

pn1n2l =
+l∑

m=−l

cn1lmc
∗
n2lm

(14.12)

This rotation-invariant descriptor provides a comprehensive measure of the local
atomic environment by accounting for both radial and angular information, making it a
powerful tool for analyzing atomic structures in simulations and experiments.

14.2.2 Bispectrum on 4D Hyperspace

An alternative approach to capturing manybody interactions involves mapping the neigh-
bor density function onto the surface of a 4D hypersphere. This method allows for a richer
representation of the local atomic environment by incorporating angular information in
4D.

In this formalism, the coordinates (x, y, z, r) on the 4D hypersphere are given by:

s1 = r0 cosω

s2 = r0 sinω cos θ

s3 = r0 sinω sin θ cosϕ

s4 = r0 sinω sin θ sinϕ,

r0 ≥ rc

θ = arccos (z/r)

ϕ = arctan (y/x)

ω = πr/r0

where r0 is a characteristic radius (related to the cutoff radius rc), ω, θ, and ϕ are the
spherical coordinates.

CHAPTER 14. REPRESENTING LOCAL ATOMIC ENVIRONMENT 221

The atomic neighbor density function is expressed as:

ρ(r) = δ(r) +
∑
i

fc(r)δ(r− ri) (14.13)

The first term ensures that the density function remains well-behaved with respect to
variations in ω, and fc is a smooth function to ensure that the it gradually decays to 0
when r ≥ rc.

By expanding the atomic neighbor density function in terms of the Wigner-D matrix
elements, which represent rotations in the angular coordinates, we obtain:

ρ(r) =
+∞∑
j=0

+j∑
m′,m=−j

cjm′,mD
j
m′,m(2ω; θ, ϕ) (14.14)

The coefficients cjm′,m are determined by projecting the neighbor density function onto
the Wigner-D matrix elements:

cjm′,m =
〈
Dj

m′,m

∣∣ρ〉

=

∫ π

0

dω sin2 ω ω

∫ π

0

dθ sin θ

∫ 2π

0

dϕD∗j
m′,m(2ω; θ, ϕ) ρ(r)

= D∗j
m′,m(0) +

∑
i

fcut(ri)D
∗j
m′,m(ri) (14.15)

Finally, the bispectrum components, which capture three-body correlations, can
be computed using the triple correlation of the expansion coefficients:

Bj1,j2,j =

+j∑
m′,m=−j

c∗jm′,m

+j1∑
m′

1,m1=−j1

cj1m′
1,m1

+j2∑
m′

2,m2=−j2

cj2m′
2,m2

Cj1j2j
m1m2m

Cj1j2j
m′

1m
′
2m

′ (14.16)

Here, Cj1j2j
m1m2m

are the Clebsch-Gordan coefficients, which ensure proper angular
momentum coupling in the bispectrum calculation.

14.2.3 Atomic Cluster Expansion

So far, the powerspectrum and bispectrum ideas are great in terms of strict orthonormal-
ity. In parallel to the spectrum descriptors, it is also popular to design descriptors that
explicitly counts the many-body interactions with the choice of Gaussian basis set (for
more details, please refer to Behler and Parrinello [43, 44]). But it often requires manual
parametrization of the basis set. However, none of them can take into both aspects.

Drautz made an important step to provide a general framework based on Atomic
Cluster Expansion (ACE) [45]. His idea is to break the energy of atoms in a cluster-
expansion fashion.

(https://en.wikipedia.org/wiki/Wigner_D-matrix

222 Atomistic Simulation in Materials Modeling

Ei = V (0) + V (1)(ri) +
1

2

∑
ij

V (2)(ri, rj)

+
1

3!

∑
ijk

V (3)(ri, rj, rk)

+
1

4!

∑
ijkl

V (4)(ri, rj, rk, rl) + · · · , (14.17)

where ri is the position of atom i, V (0) is a constant offset value, and V (1), V (2) · · ·
are the potentials functions due to the 1-body, 2-body clusters.

For a cluster α with k neighbors surrounding the center atom i, the energy of the center
atom should be uniquely determined by the neiboring distances (rj1i, rj2i, · · · rjki). We
define a set of orthonormal basis ϕν to expand them. Due to the orthonormality, ϕ-series
satisfy ∫

ϕ∗
ν(r)ϕu(r)dr = δνu∑

ν

ϕ∗
ν(r)ϕu(r′)dr = δ(r− r′)

Then, the cluster-α’s basis function is

Φα
ν = ϕv1(rj1i)ϕv2(rj2i) · · ·ϕvk(rjki)

Similarly, Φαν is orthonomal and the expansion coefficients can be obtained by pro-
jection,

Jα
ν = ⟨Φα

ν |Ei⟩
And the energy can be expressed as

Ei =
∑
j

∑
v

J (1)
v ϕv(rji)

+
1

2

j1 ̸=j2∑
j1j2

∑
v1v2

J (2)
v1v2

ϕv1(rj1i)ϕv2(rj2i)

+
1

3!

j1 ̸=j2,···∑
j1j2j3

∑
v1v2v3

J (3)
v1v2v3

ϕv1(rj1i)ϕv2(rj2i)ϕv3(rj3i)

+ · · · .

One may rewrite it in unrestricted sums,

Ei =
∑
j

∑
v

c(1)v ϕv(rji)

+
1

2

∑
j1j2

∑
v1v2

c(2)v1v2
ϕv1(rj1i)ϕv2(rj2i)

+
1

3!

∑
j1j2j3

∑
v1v2v3

c(3)v1v2v3
ϕv1(rj1i)ϕv2(rj2i)ϕv3(rj3i)

+ · · · . (14.18)

CHAPTER 14. REPRESENTING LOCAL ATOMIC ENVIRONMENT 223

Obviously, evaluating this formula requires O(Ncν) +O(N2
c ν

2) +O(N3
c ν

3) + · · · cost,
thus prohibiting its practical usage. However, one can the reordering trick. We can first
evaluate

∑
j ϕν(rji). Physically, this term mimics the projection of the basis ϕν to atom

i’s neighbor density function (ρi),

ρi =
∑
j

δ(r− rji) −→ Aiv = ⟨ρi|ϕv⟩ =
∑
j

ϕv(rji),

Hence we define it as the atomic base Aiν at atom i and the basis function ν. Using
Aiν , one can further compute the double, triple and quadruple summations as well,∑

j1j2

ϕν1(rj1i)ϕν2(rj2i) = Aiν1Aiν2

∑
j1j2j3

ϕν1(rj1i)ϕν2(rj2i)ϕν3(rj3i) = Aiν1Aiν2Aiν3

Hence, eq. 14.18 becomes

Ei(σ) =
∑
v

c(1)v Aiv +
∑
v1≥v2

c(2)v1v2
Aiv1Aiv2

+
∑

v1≥v2≥v3

c(3)v1v2v3
Aiv1Aiv2Aiv3 + · · · . (14.19)

As compared to the original formula, the new formula requires only O(ν) + O(ν2) +
O(ν3) + · · · , that linearly scales with respect to number of neighbors within a cutoff.

In a practical calculation, the basis function should include both radial and angular
components such that,

ϕν(r) =
√

4πRnl(r)Ylm(r̂)

Therefore, ν needs to be collapsed into three indices (nlm), which n counts the radial
basis and lm counts for the spherical harmonics.

From eq. 14.19, one can derive the rotational invariant products as follows

B
(1)
in =Ain00, (14.20)

B
(2)
in1n2l

=
l∑

m=−l

(−1)mAin1lmAin2l−m, (14.21)

B
(3),l1l2l3
in1n2n3

=

l1∑
m1=−l1

l2∑
m2=−l2

l3∑
m3=−l3

(
l1 l2 l3
m1 m2 m3

)
Ain1l1m1Ain2l2m2Ain3l3m3 , (14.22)

B
(4),l1l2l3l4
in1n2n3n4

=
∑

m1,··· ,m4

[
l1 l2 l3 l4
m1 m2 m3 m4

]
Ain1l1m1Ain2l2m2Ain3l3m3Ain4l4m4 , (14.23)

B
(5),l1l2l3l4l5
in1n2n3n4n5

=
∑

m1,··· ,m5

[
l1 l2 l3 l4 l5
m1 m2 m3 m4 m5

]
Ain1l1m1Ain2l2m2Ain3l3m3Ain4l4m4Ain5l5m5 .

(14.24)

From the expression, B(2) is clearly very similar to the powerspectrum descriptor,
while B(3) has a strong correlation with the bispectrum descriptor. In the mean time,
the descriptors are explicitly tied to the 2-body, 3-body clusters, which is connected to
the BP approaches. As such, one can consider the set of descriptors is a generalization
of previously developed spectrum [42] and

224 Atomistic Simulation in Materials Modeling

14.3. Code Implementation

14.3.1 Reference environments

SC/Diamond/BCC/FCC/HCP/Icosahderal

14.3.2 The Bond Order Parameters

14.3.3 The Powerspectrum Descriptor

14.3.4 The ACE Descriptor

14.4. Applications

Manybody descriptors, such as the power spectrum and bispectrum, have found widespread
applications in various fields of materials science, condensed matter physics, and machine
learning, particularly in the analysis of atomic-scale structures. Their ability to describe
both angular and radial components of atomic environments has made them essential
tools for understanding complex materials and phenomena.

• Machine Learning Interatomic Potentials. One of the most prominent appli-
cations of many-body descriptors is in the development of machine-learning-based
interatomic potentials. These models require descriptors that are invariant to trans-
lations, rotations, and permutations of atoms. By providing a compact and invari-
ant representation of the local atomic environment, many-body descriptors allow
machine learning models to predict atomic forces and energies with high accuracy,
without the need for empirical fitting. This has revolutionized the simulation of
large-scale systems, such as materials under extreme conditions or complex chemi-
cal reactions.

• Materials Characterization in Dynamical Simulation. Bond order param-
eters are widely used in MD simulations to distinguish between different crystal
structures (e.g., fcc, bcc, hcp) and to identify phase transitions between solid, liq-
uid, and amorphous states. These descriptors allow researchers to quantify the
degree of local order or disorder in a material and monitor how this order evolves
over time. This is particularly useful in the study of glasses, liquids, and amor-
phous materials, where traditional descriptors like the pair distribution function
fail to capture the full complexity of the atomic arrangement.

• Material Properties Prediction. By representing atomic structures in a form
that is both compact and invariant, these descriptors enable the construction of
high-throughput screening models to predict material properties such as hardness,
conductivity, and thermal stability. The use of descriptors like the bispectrum in
machine learning pipelines has enabled researchers to explore vast chemical and
structural spaces and identify novel materials with desired properties. Manybody
descriptors are also employed to study nano-structures and catalytic surfaces, where
the arrangement of atoms plays a key role in determining reactivity and stability.

CHAPTER 14. REPRESENTING LOCAL ATOMIC ENVIRONMENT 225

14.5. Conclusion and Further Discussions

The development of manybody descriptors, such as the power spectrum and bispectrum,
has provided researchers with powerful tools to describe complex atomic environments
in a rigorous and invariant manner. These descriptors have addressed the limitations of
simpler pairwise and angular metrics, enabling more accurate characterization of local
atomic arrangements. Whether in the context of interatomic potentials, structural anal-
ysis, phase transitions, or materials discovery, manybody descriptors have significantly
advanced our understanding of atomic-scale phenomena.

226 Atomistic Simulation in Materials Modeling

A. Linear Algebra and Python Im-
plementation

Throughout the book, many computational techniques rely on the operations on the
vectors and matrices. Therefore, the readers are assumed to know the fundamental
concepts in linear algebra and their realization via Python. This chapter provides a brief
overview of fundamental linear algebra concepts and their Python implementations.

A.1. Vector and Matrix

A vector is a one-dimensional array representing a point or direction in space. For in-
stance:

v =


v1
v2
...
vn


A matrix is a two-dimensional array that represents a linear transformation:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



A.2. Norm, Determinant and Inverse

The norm of a vector v measures its length:

∥v∥ =
√
v21 + v22 + · · ·+ v2n

The determinant of a square matrix A quantifies its scale transformation:

det(A) = a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

The inverse of a square matrix A satisfies:

A−1A = I

227

228 Atomistic Simulation in Materials Modeling

A.3. Multiplications

Scalar-Vector Multiplication

c · v =


cv1
cv2
...
cvn


Matrix-Vector Multiplication

Av =

a11v1 + a12v2
a21v1 + a22v2

...


Matrix-Matrix Multiplication

(A ·B)ij =
∑
k

aikbkj

Einstein Summations

A.4. Inner and Outer Product

The inner product of two vectors a and b:

a · b =
∑
i

aibi

The outer product of two vectors a and b:

(a⊗ b)ij = aibj

A.5. Dirac Notation

In quantum mechanics, vectors are represented in Dirac notation as kets |ψ⟩. The inner
product is written as:

⟨ϕ|ψ⟩ =
∑
i

ϕ∗
iψi

The outer product is represented as:

|ϕ⟩⟨ψ|

A.6. Eigenvalue Problem

For a square matrix A:

Ax = λx

where λ is the eigenvalue and x is the eigenvector.

det(A− λI) = 0

APPENDIX A. LINEAR ALGEBRA AND PYTHON IMPLEMENTATION 229

A.7. Numerical Computation in Python

NumPy provide powerful numerical computation capabilities in Python, similar to MATLAB.
NumPy offers efficient array operations and linear algebra functions. Here’s a demon-
stration of basic linear algebra operations using NumPy:

1 import numpy as np

2

3 # Vector and matrix definitions

4 v = np.array ([1, 2, 3])

5 A = np.array ([[1, 2], [3, 4]])

6

7 # Norm

8 norm = np.linalg.norm(v)

9 print("Norm:", norm)

10

11 # Determinant

12 det = np.linalg.det(A)

13 print("Determinant:", det)

14

15 # Inverse

16 inv = np.linalg.inv(A)

17 print("Inverse :\n", inv)

18

19 # Einstein summation for dot product

20 a = np.array ([1, 2, 3])

21 b = np.array ([4, 5, 6])

22 dot_product = np.einsum("i,i->", a, b)

23 print("Dot product (Einstein summation):", dot_product)

24

25 # Matrix multiplication using Einstein summation

26 C = np.einsum("ik,kj->ij", A, B)

27 print("Matrix multiplication (Einstein summation):\n", C)

28

29 # Eigenvalues and eigenvectors

30 eigvals , eigvecs = np.linalg.eig(A)

31 print("Eigenvalues:", eigvals)

32 print("Eigenvectors :\n", eigvecs)

In addition to Numpy, SciPy extends these capabilities with additional scientific com-
puting tools. For instance, SciPy provides functions for optimization, integration, inter-
polation, special functions (e.g., spherical harmonics), and more. Both Numpy and SciPy

are widely used in scientific computing and data analysis.
For symbolic mathematics, SymPy provides functionality similar to Mathematica and

Maple, allowing for symbolic manipulation of mathematical expressions.

A.8. Advanced Usage Python

In Python and many other languages, summation can be made highly efficient through
vectorization and broadcasting, which leverage NumPy’s optimized C-implementation to
perform operations on arrays without explicit loops. This avoids the overhead of Python
loops and improves performance significantly.

1 import numpy as np

2

230 Atomistic Simulation in Materials Modeling

3 # Example: Summing elements of a vector

4 a = np.array ([1, 2, 3, 4, 5])

5 total = np.sum(a)

6 print("Sum of vector elements:", total)

7

8 # Example: Summing a matrix with a vector

9 A = np.array ([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

10 b = np.array ([10, 20, 30])

11

12 # Broadcasting the vector b along rows of A

13 result = A + b

14 print("Matrix and vector summation (broadcasted):\n", result)

15

16 # Example: Tensor summation using Einstein summation

17 C = np.einsum(’ij,jk->ik’, A, A.T)

18 print("Result of Einstein summation :\n", C)

B. Spherical Harmonics

Spherical harmonics play a crucial role in quantum mechanics and computational ma-
terials modeling. They are widely used to represent functions defined on the surface
of a sphere, providing a natural basis for angular-dependent phenomena such as atomic
orbitals, molecular vibrations, and scattering processes.

B.1. Mathematical Definition

Spherical harmonics, denoted as Ylm(θ, ϕ), are the eigenfunctions of the angular part of
the Laplacian operator in spherical coordinates. They form a complete, orthonormal set
of functions defined on the unit sphere, satisfying the spherical Schrödinger equation:

∇2Ylm(θ, ϕ) + l(l + 1)Ylm(θ, ϕ) = 0 (B.1)

where l is the degree (non-negative integer), m is the integer such that −l ≤ m ≤ l,
θ and ϕ are the polar angle (0 to π) and the azimuthal angle (0 to 2π).

The general form of spherical harmonics can be written as:

Ylm(θ, ϕ) = NlmPlm(cos θ)eiϕ (B.2)

where Nlm is a normalization constant ensuring orthonormality,

Nlm =

√
(2l + 1)(l −m)!

4π(l +m)!

and Plm are the associated Legendre polynomials

Plm(x) = (−1)m(1− x2)m/2 d
m

dxm
Pl(x)

The associated Legendre polynomials satisfy an orthogonality condition:∫ 1

−1

Plm(x)Pl′m(x) dx = 0 for l ̸= l′.

In addition, it can be computed recursively using:

Pl+1,m(x) =
(2l + 1)xPlm(x)− (l +m)Pl−1,m(x)

l −m+ 1
(B.3)

231

232 Atomistic Simulation in Materials Modeling

B.2. Examples of Real Spherical Harmonics

For specific values of l and m, the associated Legendre polynomials are

Plm(x) =



1, l = 0,m = 0,

x, l = 1,m = 0,

−
√

1− x2, l = 1,m = 1,
1
2
(3x2 − 1), l = 2,m = 0,

−3x
√

1− x2, l = 2,m = 1,

3(1− x2), l = 2,m = 2.

And the corresponding Ylm values are,

Ylm(θ, ϕ) =



1√
4π
, l = 0,m = 0,√
3
4π

sin θ sinϕ, l = 1,m = −1,√
3
4π

cos θ, l = 1,m = 0,√
3
4π

sin θ cosϕ, l = 1,m = 1,

1
4

√
5
π
(3 cos2 θ − 1), l = 2,m = 0.

B.3. The Real Valued Spherical Harmonics

While spherical harmonics are inherently complex-valued, many physical problems require
real-valued representations. These are constructed as linear combinations of the complex
functions:

Y Re
lm (θ, ϕ) =


√

2(−1)mIm[Yl|m|(θ, ϕ)], m < 0

Yl0(θ, ϕ), m = 0√
2(−1)mRe[Ylm(θ, ϕ)], m > 0

(B.4)

This formulation eliminates complex components, making them more suitable for
numerical computation and physical interpretations, such as in DFT pseudopotentials
and molecular modeling.

B.4. Calculation with Python

While it is relatively straightforward to implement spherical harmonics calculations man-
ually, SciPy provides highly optimized and efficient methods for evaluating these func-
tions. Below is an example demonstrating the use of scipy.special.sph harm to compute
the spherical harmonics for given quantum numbers.

1 import numpy as np

2 from scipy.special import sph_harm

3

4 # Quantum numbers

5 l, m = 1, 0

6

APPENDIX B. SPHERICAL HARMONICS 233

7 # Define angles in radians

8 phi = np.linspace(0, 2 * np.pi , 100) # azimuthal angle

9 theta = np.linspace(0, np.pi, 100) # polar angle

10

11 # Evaluate spherical harmonics

12 Y_lm = sph_harm(m, l, phi , theta[:, None]) # Broadcasting (theta , phi)

13

14 # Print the real and imaginary parts

15 print("Real part:\n", np.real(Y_lm))

16 print("Imaginary part:\n", np.imag(Y_lm))

234 Atomistic Simulation in Materials Modeling

C. Ewald Summation

Ewald summation is a computational technique used to efficiently evaluate the long-range
Coulomb interactions in systems with periodic boundary conditions, such as crystals and
charged systems. It is widely applied in both DFT and MD simulations.

C.1. Motivation

In a periodic system, we often need to compute the total electrostatic energy for charged
particles. The general formula is

E =
1

2

∗∑
l

∑
ij

ZiZj

|rij + l|
(C.1)

where l denote the lattice vectors, i and j are the particle indices, Zi and Zj are the
charges, and rij is the distance vector. To compute the total sum, one ideally needs to go
over all lattice vectors until the contribution becomes negligible at a long distance. The
* symbol on the top of first summation highlights that the summation should exclude
the cases of self interaction, namely when l = 0 and i = j, as it will lead to division by
zero of 1/r.

However, the 1/r term decays very slowly even at a long distance. Direct summation
over all periodic images converges very slowly or may even diverge.

C.2. Decomposition of 1/r

We use the error function (erf) and its complementary function (erfc), defined as:

erf(x) =
2√
π

∫ x

0

e−t2dt,

erfc(x) = 1− erf(x).

In these terms, erf(x) approaches 1 as x→∞ and 0 as x→ 0, while erfc(x) approaches
0 as x→∞ and 1 as x→ 0.

As such, we rewrite the 1/r term as follows

1

r
=

1

r

[
erfc(ηr) + erf(ηr)

]
=

erfc(ηr)

r
+

erf(ηr)

r
.

To compute the second term more efficiently, we shall convert it to the reciprocal
space.

235

236 Atomistic Simulation in Materials Modeling

f(g) = 4π

∫ ∞

0

erf(ηr)

r

sin(gr)

gr
r2dr =

4π

g

∫ ∞

0

erf(ηr) sin(gr)dr

Use the definition of the error function,

f(g) =
4π

g

∫ ∞

0

[
2√
π

∫ ηr

0

e−u2

du

]
sin(gr)dr

=
8
√
π

g

∫ ∞

0

∫ ηr

0

e−u2

sin(gr)dudr

=
8
√
π

g

∫ ηr

0

e−u2

[∫ ∞

r=u/η

sin(gr)dr

]
du

=
8
√
π

g

∫ ηr

0

e−u2 cos(gu/η)

g
du

=
8
√
π

g2

∫ ηr

0

e−u2

cos(gu/η)du

Now we use the known Gaussian–cosine integral (for α > 0):∫ ∞

0

e−x2

cos(αx) dx =

√
π

2
exp

(
−α

2

4

)
.

Here α = g/η, plug it back

f(g) =
8
√
π

g2

√
π

2
exp

(
− g2

4η2

)
=

4π

g2
exp

(
− g2

4η2

)
(C.2)

Hence the final expression of 1/r is

1

r
=

erfc(ηr)

r
+

4π

g2
exp

(
g2

4η2

)
(C.3)

Here, the first term erfc(ηr) represents a short range behavior since it is large at a
short distance and then rapidly converge to 0 at the long distance. On the other hand,
the second term erf(ηr) approaches to 1/r at large distances and hence it represent the
long range interaction.

Figure C.1 illustrates the trends of the decay rates for the short-range and long-range
terms as functions of η. The decay behavior of these terms is strongly influenced by the
choice of η. Key observations include:

1. For a large η, the short-range term decays faster, reducing the real-space cutoff.

2. For a small η, the long-range term decays faster in reciprocal space, requiring fewer
Fourier terms, but increasing cost.

Therefore, a good choice of η should balance the real-space and reciprocal-space con-
tributions, thus optimizing computational cost while ensuring numerical accuracy.

APPENDIX C. EWALD SUMMATION 237

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

r

f
(r

)
1/r

erf(0.3r)/r
erfc(0.3r)/r
erf(0.1r)/r
erfc(0.1r)/r

Figure C.1: The break down of 1/r term with different η choices.

C.3. Total Energy and Its Correction

Using the decomposition, eq. C.1 can be split into several terms.
The real space summation is straightforward to evaluate.

Ereal =
1

2

∑
ij

ZiZj

[∑
l

erfc(η|Ri −Rj − l|)
|Ri −Rj − l|

]
(C.4)

The reciprocal space sum is first expressed as,

Ereciprocal =
1

2

∫
d3r

∫
d3r′ρ(r)ρ(r′)

erf(η|r− r′|)
|r− r′|

where

ρ(r) =
N∑
j=1

Zjδ(r− rj)

This integral can be evaluated vi Fourier transform,

ρ(G) =

∫
Ω

ρ(r)e−ik·rd3r =
N∑
j=1

Zje
−iG·rj

Combining it with eq. C.2

Ereciprocal =
1

2Ω

∑
G

4π

G2
exp

(
−G

2

4η2

)∣∣ρ(G)
∣∣2

∣∣ρ(G)
∣∣2 =

∑
i

∑
j

ZiZje
iG·(ri−rj) =

∑
ij

ZiZj[cos[G · (ri − rj)] + i sin[G · (ri − rj)]

Since the energy must be in real value, we can omit the sin term and get the final
expression as

Ereciprocal(G ̸= 0) =
1

2Ω

∑
ij

ZiZj

∑
G

4π

G2
exp

(
−G

2

4η2

)
cos[G · (ri − rj)] (C.5)

238 Atomistic Simulation in Materials Modeling

In addition, there still exist two issues in practice. First, this real space sum ignores
the case of r = 0. Hence we need to subtract it. At r = 0 , the self-energy per charge is:

Eself = lim
r→0

1

2

erfc(ηr)

r
.

Using the Taylor expansion of erfc near r = 0:

erfc(ηr) ≈ 1− 2ηr√
π
→ erfc(ηr)

r
≈ 1

r
− 2η√

π

The leading divergence is 1/r that cannot be counted, but the finite part is:

Eself = − 2η√
π

∑
Z2

i

Second, periodic systems assume a neutralizing background charge to ensure charge
neutrality. The interaction between the charges ρpts(r) and this background (ρbg(r) =∑

i Zi/Ω) also needs to be corrected.

Epts-bg =
1

2

∫
d3r

∫
d3r′ρpts(r)ρbg(r

′)
erf(η|r− r′|)
|r− r′|

= −
∑

i Zi

Ω

∫
Ω

d3rρpts(r)

∫
Ω

d3r′
erf(η|r− r′|)
|r− r′|

−
∑

i Zi

Ω

∑
i

Zi

∫
Ω

d3r′
erf(η|r− r′|)
|r− r′|

For all points in a cubic box, the integral can be analytically evaluated∫
Ω

d3r′
erf(η|r− r′|)
|r− r′|

=
π

η2

Using this relation,

Epts-bg = − 1

Ω

π

η2

(∑
i

Zi

)2

Hence the final expression of energy is

E = Ereal + Ereciprocal + Eself + Epts-bg

=
1

2

∑
i ̸=j

ZiZj

[
erfc(η|Ri −Rj −T|)
|Ri −Rj −T|

+
4π

Ω

∑
G̸=0

1

Ĝ2
exp

(
Ĝ2

4η2

)
cos[G · (Ri −Rj)]

]

− 2η√
π

∑
i

Z2
i −

π

Ωη2

(∑
i

Zi

)2

(C.6)

This idea of Ewald summation is schematically shown in Fig. C.2

APPENDIX C. EWALD SUMMATION 239

Real Space Reciprocal Space

Self Interaction

Fourier Transform

CorrectionCorrection

+
+

- g1
g2

g3

Figure C.2: The general idea of Ewald Summation.

C.4. Practical Setting of Parameters

The balance between real-space and reciprocal-space terms is controlled by η (the splitting
parameter). For small systems, real-space sums can be computationally dominant because
the number of image cells considered may be large. For large systems, reciprocal-space
sums dominate because the number of reciprocal lattice vectors scales cubically with
system size.

To select an appropriate value for η, we first need to define the truncation of Gmax,
the maximum reciprocal lattice vector. This truncation ensures that both the short-range
and long-range terms decay below a specified precision threshold when G = Gmax.

exp

(
− G2

max

4η2

)
= ϵ → η =

Gmax

2
√
− log ϵ

erfc(ηtmax)

tmax

≤ ε → tmax ≥
√
− log ϵ

η

Hence, when gmax = 2.0 and ϵ = 10−8, η can be approximated as

η =
gmax

2
√
− log(10−8)

≈ 0.2329953

C.5. Python Ewald Simulation for a Silicon Crystal

Below is the Python implementation for simulating the nuclear-nuclear energy for the
cubic diamond silicon according to eq. C.6.

1 import numpy as np

2 from scipy.special import erfc

3

4 def ewald(lattice , positions , Zvals , gmax =2.0, epsilon =1e-8):

5 """

6 Ewald summation of the nuclear -nuclear energy (eq. B.6)

7

240 Atomistic Simulation in Materials Modeling

8 Args:

9 lattice (np.ndarray): Lattice vectors

10 positions (np.ndarray): Atomic positions

11 Zvals (np.ndarray): Atomic charges

12 gmax (float): Reciprocal space cutoff

13 """

14 # Initialize variables

15 Natoms = len(positions)

16 rec_lattice = 2 * np.pi * np.linalg.inv(lattice)

17 t = lattice.T

18 g = rec_lattice.T

19 Omega = np.linalg.det(lattice)

20 positions = positions @ lattice

21

22 # Get eta and cutoff Parameters

23 gexp = -np.log(epsilon)

24 eta = np.sqrt(gmax **2 / gexp) / 2

25 tmax = np.sqrt (0.5 * gexp) / eta

26

27 # Self -energy correction

28 ewald = -2 * eta * np.sum(Zvals ** 2) / np.sqrt(np.pi)

29

30 # background charge subtraction

31 ewald -= (np.pi * np.sum(Zvals)**2) / (Omega * eta ** 2)

32

33 def get_lattice_translations(t, tmax):

34 # Generate lattice translations

35 tm = np.linalg.norm(t, axis =1)

36 m = np.ceil(tmax / tm + 1.5).astype(int)

37 I, J, K = np.meshgrid(np.arange(-m[0], m[0]+1) ,

38 np.arange(-m[1], m[1]+1) ,

39 np.arange(-m[2], m[2]+1) , indexing=’ij’)

40 T = I[..., None] * t[0] + J[..., None] * t[1] + K[..., None] *

t[2]

41 T = T.reshape(-1, 3)

42 return T

43

44 T = get_lattice_translations(t, tmax)

45 G = get_lattice_translations(g, gmax)

46

47 # Compute prefactor for E_reci

48 G2 = np.sum(G**2, axis =1)

49 mask = G2 > 1e-8 # Exclude G=0

50 G = G[mask]

51 G2 = G2[mask]

52 exp_term = np.exp(-0.25 * G2 / eta ** 2)

53 reci_factor = 4 * np.pi / Omega * exp_term / G2

54

55 for i in range(Natoms):

56 for j in range(Natoms):

57 ZiZj = Zvals[i] * Zvals[j]

58 dR = positions[i] - positions[j]

59

60 # Real space

61 rmag = np.linalg.norm(dR - T, axis =1)

62 mask = (rmag > 1e-8) | (i != j)

63 E_real = np.sum(erfc(rmag[mask] * eta) / rmag[mask])

64

APPENDIX C. EWALD SUMMATION 241

65 # Reciprocal space

66 E_reci = np.sum(reci_factor * np.cos(G @ dR.T))

67 ewald += ZiZj * (E_real + E_reci)

68

69 return 0.5 * ewald

70

71 if __name__ == "__main__":

72

73 lattice = 5.13155 * np.array ([[0, 1, 1], [1, 0, 1], [1, 1, 0]])

74 positions = np.array ([[0, 0, 0], [0.25 , 0.25, 0.25]])

75 Zvals = np.array ([4.0 , 4.0])

76 print(ewald(lattice , positions , Zvals))

77

78 # Total Energy -8.397927400714138

For a simple system like cubic diamond with 2 atoms, the code should be sufficient
to get a rather accurate result. For a relative large system in DFT calculation, further
optimization through vectorization or parallelization will be needed.

C.6. Particle Mesh Ewald Summation

The standard Ewald summation technique, while accurate, involves computing pairwise
interactions in both real space and reciprocal space, making it scale as O(N2), where
N is the number of particles. For large systems of MD simulation involving millions of
atoms, this computational cost becomes prohibitive.

The Particle Mesh Ewald (PME) method addresses this limitation by approximating
the reciprocal-space sums (Ereciprocal) using Fast Fourier Transforms. In the mean time,
B-splines is used to map charges onto the mesh, ensuring smooth transitions. Thanks
to this simplification, computational complexity scales as O(N logN) due to the use of
FFT. Hence it is highly scalable and suitable for large systems with millions of particles.
For more details, please refer to the work by Darden and coworkers [46].

242 Atomistic Simulation in Materials Modeling

D. Wigner-D matrix and Clebsch-Gordan
Coefficients

D.1. Introduction

In quantum mechanics, the Wigner-D matrix and Clebsch-Gordan coefficients are indis-
pensable tools for analyzing angular momentum. The Wigner-D matrix describes the
rotation operator in the angular momentum eigenstate basis, while the Clebsch-Gordan
coefficients facilitate the coupling of angular momenta, which is crucial in multi-particle
quantum systems.

D.2. Wigner-D matrix

The Wigner-D matrixDj
m′m(α, β, γ) is the matrix element of the rotation operator R̂(α, β, γ)

acting on an angular momentum eigenstate |j,m⟩:

Dj
m′m(α, β, γ) = ⟨j,m′|R̂(α, β, γ)|j,m⟩

in which α, β, γ are the Euler angles and j is the total angular momentum quantum
number, m and m′ are the magnetic quantum numbers.

Explicitly, the Wigner-D matrix is:

Dj
m′m(α, β, γ) = e−im′αdjm′m(β)e−imγ

Here, djm′m(β) is the reduced Wigner-d matrix.

D.2.1 Properties of the Wigner-D Matrix

The Wigner-D matrices satisfy the orthogonality relation:

∫ 2π

0

∫ π

0

∫ 2π

0

Dj∗m′m(α, β, γ)Dj′m′‘m′(α, β, γ) sin β dα dβ dγ =
8π2

2j + 1
δjj′δmm′δm′m′′

It is also symmetric

Dj
m′m(α, β, γ) = (−1)m−m′

Dj
−m,−m′(α, β, γ)

243

244 Atomistic Simulation in Materials Modeling

D.3. Clebsch-Gordan Coefficients

Clebsch-Gordan coefficients ⟨j1,m1; j2,m2|j,m⟩ express the relationship between the cou-
pled angular momentum basis |j,m⟩ and the uncoupled basis |j1,m1⟩|j2,m2⟩:

|j,m⟩ =
∑

m1,m2

⟨j1,m1; j2,m2|j,m⟩|j1,m1⟩|j2,m2⟩

The Clebsch-Gordan coefficients are nonzero only if the following selection rules are
satisfied:

m = m1 +m2, |j1 − j2| ≤ j ≤ j1 + j2

Similar to Wigner-D matrix, the Clebsch-Gordan Coefficients also satisfy∑
j,m

⟨j1,m1; j2,m2|j,m⟩⟨j1,m′
1; j2,m

′
2|j,m⟩ = δm1,m′

1
δm2,m′

2

⟨j1,m1; j2,m2|j,m⟩ = (−1)j1+j2−j⟨j2,m2; j1,m1|j,m⟩

D.4. Python Computation

Modern Python libraries provide straightforward methods to compute the Wigner-D ma-
trix and Clebsch-Gordan coefficients.

1 from scipy.special import wigner_d

2 d = wigner_d(j=1, mp=1, m=0, beta=np.pi/4)

3 print(d)

4

5 from sympy.physics.quantum.cg import CG

6 cg = CG(1/2, 1/2, 1/2, -1/2, 1, 0).doit()

7 print(cg)

E. List of Popular Codes and Tools

While this book primarily serves as an introduction to popular atomistic modeling tech-
niques, readers may wish to further expand their knowledge or conduct productive simula-
tions. To support continued learning and practical applications, we provide the following
list of resources for the readers.

E.1. DFT packages

For large-scale and high-performance simulations, several well-established commercial
and open-source DFT software packages are available:

1. VASP: https://www.vasp.at, an efficient planewave DFT code based on the projector-
augmented wave (PAW) method, suitable for bulk materials, surfaces, and inter-
faces, and many others.

2. Quantum Espresso: https://www.quantum-espresso.org, a popular open-source
planewave DFT code, highly extensible and integrates various modules for different
functionalities.

3. ABINIT: https://abinit.github.io/abinit_web/, an open-source planewave DFT
code, with excellent support for excited states calculations.

4. CP2K: https://www.cp2k.org, a highly versatile code designed for DFT-based MD
simulations. It implements the Gaussian and planewave (GPW) method and can
handle both localized and delocalized systems.

5. PySCF: https://pyscf.org, Python-based Simulations of Chemistry Framework
based on localized basis set. In addition to DFT, it also supports other high-end
electronic structure methods such as coupled-cluster, and configuration interaction
calculations.

The following packages are particularly well-suited for educational purposes, algorithm
development, and testing:

1. DFTK.jl: https://docs.dftk.org/stable/

2. PWDFT.jl: https://github.com/f-fathurrahman/PWDFT.jl

245

https://www.vasp.at
https://www.quantum-espresso.org
https://abinit.github.io/abinit_web/
https://www.cp2k.org
https://pyscf.org
https://docs.dftk.org/stable/
https://github.com/f-fathurrahman/PWDFT.jl

246 Atomistic Simulation in Materials Modeling

E.2. Classical MD packages

Several popular classical MD simulation toolkits are also publicly available,

1. LAMMPS: https://www.lammps.org, a versatile and highly scalable MD engine to
support many classical force fields for different types of materials modeling.

2. Gromacs: https://www.gromacs.org, a highly efficient MD package for biomolec-
ular systems.

3. NAMD: https://www.ks.uiuc.edu/Research/namd/, a large biomolecular simula-
tions code for large-scale parallel computing.

4. JAXMD: https://jax-md.readthedocs.io, a Python-based MD library built on
JAX, providing automatic differentiation and GPU/TPU acceleration. It is partic-
ularly suitable for machine learning applications in molecular simulations.

For educational purposes, one may also be interested in ASE’s MD module (https:
//wiki.fysik.dtu.dk/ase/ase/md.html) or JAXMD.

E.3. Tight-binding Packages

The tight-binding (TB) method provides a simplified framework for studying the elec-
tronic properties of materials, making it ideal for large-scale simulations and modeling
electronic transport properties. Several software packages implement the tight-binding
method, with varying degrees of complexity and functionality.

1. DFTB+: https://www.dftbplus.org, an efficient quantum-mechanical simulation
package based on the tight-binding approximation to DFT.

2. CP2K: https://www.cp2k.org, also implements several semi-empirical tight-binding
(SE-TB) and DFTB approaches.

3. Wannier90: http://www.wannier.org, designed to compute maximally localized
Wannier functions (MLWFs) and tight-binding parameters from DFT calculations.

For educational purposes, pythtb (https://www.physics.rutgers.edu/pythtb/)
also provides several tools for modeling tight-binding systems and topological physics
studies.

E.4. Phonon Packages

Phonon calculations are essential for understanding vibrational properties, thermal con-
ductivity, specific heat, and electron-phonon interactions in materials. Below, we list
some widely-used phonon calculation packages:

1. Phononpy: https://phonopy.github.io/phonopy/, A widely-used Python-based
package for phonon calculations based on force constants for realistic materials
calculations.

2. ASE’s Phonon Module: https://wiki.fysik.dtu.dk/ase/ provides tools for pro-
totypical phonon calculations within ASE workflows.

https://www.lammps.org
https://www.gromacs.org
https://www.ks.uiuc.edu/Research/namd/
https://jax-md.readthedocs.io
https://wiki.fysik.dtu.dk/ase/ase/md.html
https://wiki.fysik.dtu.dk/ase/ase/md.html
https://www.dftbplus.org
https://www.cp2k.org
http://www.wannier.org
https://www.physics.rutgers.edu/pythtb/
https://phonopy.github.io/phonopy/
https://wiki.fysik.dtu.dk/ase/

APPENDIX E. LIST OF POPULAR CODES AND TOOLS 247

E.5. Visualization Packages

Visualization plays a crucial role in analyzing atomic structures, simulation trajectories,
density maps, and phonon modes. Below are some widely-used tools for visualizing
atomistic and molecular simulations:

1. Ovito: https://www.ovito.org, a powerful tool for visualizing and analyzing
molecular dynamics and atomistic simulation data at a large scale.

2. MDAnalysis: https://www.mdanalysis.org, a Python library for analyzing molec-
ular dynamics trajectories and associated data.

3. VESTA: https://jp-minerals.org/vesta/en/, a versatile visualization program
designed for crystallographic structures and volumetric data.

E.6. Tools for Structure Manipulation and Analysis

These tools assist in creating, manipulating, and analyzing atomic structures. They are
widely used in material modeling, data processing, and simulation preparation:

1. ASE: https://wiki.fysik.dtu.dk/ase/, a Python library designed for creating,
manipulating, and running simulations of atomic structures.

2. Pymatgen: https://pymatgen.org/, a Python library for analyzing and manipu-
lating crystal structures with a focus on materials informatics.

3. PyXtal: https://pyxtal.readthedocs.io/, a Python package for generating and
analyzing crystal structures with symmetry constraints.

E.7. Online Database

In addition to standalone simulation software, several online databases and tools have
been developed to facilitate materials discovery and computational modeling. These plat-
forms provide precomputed data, interactive visualizations, and simulation frameworks,
enabling rapid exploration and analysis of materials properties. Below is a list of widely
used online resources:

1. Materials Project: https://materialsproject.org A comprehensive database
offering computed properties of thousands of materials, including band structures,
elastic constants, and formation energies. It supports data downloads, structure
visualization, and API access for programmatic queries.

2. AflowLib: http://www.aflowlib.org An extensive repository for high-throughput
materials data, including thermodynamic, electronic, and structural properties. It
provides symmetry analysis and machine learning capabilities to accelerate materi-
als design.

3. OQMD: http://oqmd.org A database focused on DFT-computed properties of crys-
talline materials. It is particularly useful for phase stability analysis and materials
screening based on formation energies.

https://www.ovito.org
https://www.mdanalysis.org
https://jp-minerals.org/vesta/en/
https://wiki.fysik.dtu.dk/ase/
https://pymatgen.org/
https://pyxtal.readthedocs.io/
https://materialsproject.org
http://www.aflowlib.org
http://oqmd.org

248 Atomistic Simulation in Materials Modeling

4. JARVIS: https://jarvis.nist.gov Developed by NIST, JARVIS combines DFT,
machine learning, and experimental data for materials discovery. It supports 2D
materials, topological materials, and quantum computations.

5. Nomad: https://nomad-lab.eu A platform that stores and processes input and
output files from a wide variety of computational codes. It also provides visualiza-
tion tools and machine-learning-based models for materials prediction.

E.8. Miscellaneous Resources

This section provides a list of useful online tools and resources that support various
aspects of materials modeling, data analysis, and simulation setup.

1. Phonon Demo: https://lampz.tugraz.at/~hadley/ss1/phonons/1d/1d2m.php.
An interactive visualization tool to simulate and understand phonon modes in one-
dimensional systems.

2. Basis Set Exchange: https://www.basissetexchange.org, A comprehensive
online repository of atomic basis sets used in quantum chemistry and solid-state
physics calculations. It allows users to download standardized basis sets for various
elements and methods.

3. OpenKIM: https://openkim.org. A repository of interatomic potentials and
force fields for molecular dynamics and lattice dynamics simulations. OpenKIM
also offers tools for benchmarking and validating force fields, ensuring compatibility
with popular simulation codes like LAMMPS.

4. Bilbao Crystallographic Server: https://www.cryst.ehu.es. A powerful
platform offering various tools for crystallography and symmetry analysis, including
space group determination, band structure paths, and symmetry-adapted modes.

5. Libxc: https://gitlab.com/libxc/libxc. A library of exchange-correlation func-
tionals used in DFT codes. It provides an extensive database of functionals and is
widely integrated into many major DFT codes.

6. Spglib: https://spglib.github.io/spglib/. A symmetry-finding library that
detects and analyzes crystal symmetries, computes space groups, and generates
symmetry operations. It is frequently used by many packages.

7. Seek-Path: https://www.materialscloud.org/work/tools/seekpath. A tool
for automatic band structure path generation in reciprocal space. It is widely used
in DFT studies for plotting band structures.

https://jarvis.nist.gov
https://nomad-lab.eu
https://lampz.tugraz.at/~hadley/ss1/phonons/1d/1d2m.php
https://www.basissetexchange.org
https://openkim.org
https://www.cryst.ehu.es
https://gitlab.com/libxc/libxc
https://spglib.github.io/spglib/
https://www.materialscloud.org/work/tools/seekpath

Bibliography

[1] John L Finney and Leslie V Woodcock. Renaissance of bernal’s random close pack-
ing and hypercritical line in the theory of liquids. J. Phys.: Condens. Matter,
26(46):463102, 2014.

[2] AI Kitaigorodskii. Organic chemical crystallography, con sultants bureau: New york,
1961 (originally published in russian by the press of the academy of sciences of the
ussr, moscow, 1955); spek, al, single-crystal structure validation with the program
platon. J. Appl. Crystallogr, 36:7–13, 2003.

[3] Berni Julian Alder and Thomas Everett Wainwright. Phase transition for a hard
sphere system. J. Chem. Phys., 27(5):1208–1209, 1957.

[4] J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard. Dynamics of radiation
damage. Phys. Rev., 120:1229–1253, 1960.

[5] A. Rahman. Correlations in the motion of atoms in liquid argon. Phys. Rev.,
136:A405–A411, 1964.

[6] Hans C Andersen. Molecular dynamics simulations at constant pressure and/or
temperature. J. Chem. Phys., 72(4):2384–2393, 1980.

[7] Nosé Shuichi. Constant temperature molecular dynamics methods. Prog. Theor.
Phys. Suppl., 103:1–46, 1991.

[8] William G. Hoover. Canonical dynamics: Equilibrium phase-space distributions.
Phys. Rev. A, 31:1695–1697, 1985.

[9] M. Parrinello and A. Rahman. Crystal structure and pair potentials: A molecular-
dynamics study. Phys. Rev. Lett., 45:1196–1199, 1980.

[10] Daan Frenkel and Berend Smit. Understanding molecular simulation: from algo-
rithms to applications. Elsevier, 2023.

[11] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–
B871, 1964.

[12] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correla-
tion effects. Phys. Rev., 140:A1133–A1138, 1965.

[13] Seymour H Vosko, Leslie Wilk, and Marwan Nusair. Accurate spin-dependent elec-
tron liquid correlation energies for local spin density calculations: a critical analysis.
Can. J. Phys., 58(8):1200–1211, 1980.

249

250 Atomistic Simulation in Materials Modeling

[14] J. P. Perdew and Alex Zunger. Self-interaction correction to density-functional ap-
proximations for many-electron systems. Phys. Rev. B, 23:5048–5079, 1981.

[15] Choirun Nisaa Rangkuti, Suci Faniandari, A Suparmi, and Yanoar Pribadi Sarwono.
Density functional calculations on h2 using 1 s slater type orbitals. J. Chem. Educ.,
101:172–180, 2023.

[16] Warren J Hehre, Robert F Stewart, and John A Pople. Self-consistent molecular-
orbital methods. i. use of gaussian expansions of slater-type atomic orbitals. J. Chem.
Phys., 51(6):2657–2664, 1969.

[17] Yoyo Hinuma, Giovanni Pizzi, Yu Kumagai, Fumiyasu Oba, and Isao Tanaka. Band
structure diagram paths based on crystallography. Comp. Mat. Sci., 128:140–184,
2017.

[18] Marvin L. Cohen and Volker Heine. The fitting of pseudopotentials to experimental
data and their subsequent application. volume 24 of Solid State Physics, pages
37–248. Academic Press, 1970.

[19] James R. Chelikowsky and Marvin L. Cohen. Electronic structure of silicon. Phys.
Rev. B, 10:5095–5107, 1974.

[20] Martin M. Rieger and P. Vogl. Electronic-band parameters in strained si1−xgex alloys
on si1−ygey substrates. Phys. Rev. B, 48:14276–14287, 1993.

[21] William C. Topp and John J. Hopfield. Chemically motivated pseudopotential for
sodium. Phys. Rev. B, 7:1295–1303, 1973.

[22] Th. Starkloff and J. D. Joannopoulos. Local pseudopotential theory for transition
metals. Phys. Rev. B, 16:5212–5215, 1977.

[23] S. Goedecker, M. Teter, and J. Hutter. Separable dual-space gaussian pseudopoten-
tials. Phys. Rev. B, 54:1703–1710, 1996.

[24] C. Hartwigsen, S. Goedecker, and J. Hutter. Relativistic separable dual-space gaus-
sian pseudopotentials from h to rn. Phys. Rev. B, 58:3641–3662, 1998.

[25] Miguel AL Marques, Micael JT Oliveira, and Tobias Burnus. Libxc: A library of
exchange and correlation functionals for density functional theory. Comp. Phys.
Comm., 183(10):2272–2281, 2012.

[26] Susi Lehtola and Miguel AL Marques. Reproducibility of density functional ap-
proximations: How new functionals should be reported. J. Chem. Phys., 159(11),
2023.

[27] E. R. Davidson. The iterative calculation of a few of the lowest eigenvalues and corre-
sponding eigenvectors of large real-symmetric matrices. J. Comput. Phys, 17:87–94,
1975.

[28] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators, 1950.

BIBLIOGRAPHY 251

[29] Andrew V. Knyazev. Toward the optimal preconditioned eigensolver: Locally opti-
mal block preconditioned conjugate gradient method. SIAM Journal on Scientific
Computing, 23(2):517–541, 2001.

[30] Péter Pulay. Convergence acceleration of iterative sequences. the case of scf iteration.
Chem. Phys. Lett., 73(2):393–398, 1980.

[31] Charles G Broyden. A class of methods for solving nonlinear simultaneous equations.
Mathematics of Computation, 19(92):577–593, 1965.

[32] D. D. Johnson. Modified broyden’s method for accelerating convergence in self-
consistent calculations. Phys. Rev. B, 38:12807–12813, 1988.

[33] Fadjar Fathurrahman, Mohammad Kemal Agusta, Adhitya Gandaryus Saputro, and
Hermawan Kresno Dipojono. Pwdft. jl: A julia package for electronic structure cal-
culation using density functional theory and plane wave basis. Comp. Phys. Comm.,
256:107372, 2020.

[34] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car,
Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila
Dabo, Andrea Dal Corso, Stefano de Gironcoli, Stefano Fabris, Guido Fratesi, Ralph
Gebauer, Uwe Gerstmann, Christos Gougoussis, Anton Kokalj, Michele Lazzeri,
Layla Martin-Samos, Nicola Marzari, Francesco Mauri, Riccardo Mazzarello, Ste-
fano Paolini, Alfredo Pasquarello, Lorenzo Paulatto, Carlo Sbraccia, Sandro Scan-
dolo, Gabriele Sclauzero, Ari P Seitsonen, Alexander Smogunov, Paolo Umari, and
Renata M Wentzcovitch. Quantum espresso: a modular and open-source soft-
ware project for quantum simulations of materials. J. Phys. Condensed Matter,
21(39):395502 (19pp), 2009.

[35] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B, 54:11169–11186, 1996.

[36] Michael F. Herbst, Antoine Levitt, and Eric Cancès. Dftk: A julian approach for
simulating electrons in solids. Proc. JuliaCon Conf., 3:69, 2021.

[37] Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli, Rune
Christensen, Marcin Du lak, Jesper Friis, Michael N Groves, Bjørk Hammer, Cory
Hargus, Eric D Hermes, Paul C Jennings, Peter Bjerre Jensen, James Kermode,
John R Kitchin, Esben Leonhard Kolsbjerg, Joseph Kubal, Kristen Kaasbjerg,
Steen Lysgaard, Jón Bergmann Maronsson, Tristan Maxson, Thomas Olsen, Lars
Pastewka, Andrew Peterson, Carsten Rostgaard, Jakob Schiøtz, Ole Schütt, Mikkel
Strange, Kristian S Thygesen, Tejs Vegge, Lasse Vilhelmsen, Michael Walter, Zhen-
hua Zeng, and Karsten W Jacobsen. The atomic simulation environment—a python
library for working with atoms. J. Phys. Condensed Matter, 29(27):273002, 2017.

[38] Atsushi Togo, Laurent Chaput, Terumasa Tadano, and Isao Tanaka. Implementation
strategies in phonopy and phono3py. J. Phys. Condens. Matter, 35(35):353001, 2023.

[39] Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso, and Paolo Giannozzi.
Phonons and related crystal properties from density-functional perturbation theory.
Rev. Mod. Phys., 73:515–562, 2001.

252 Atomistic Simulation in Materials Modeling

[40] B. I. Halperin and David R. Nelson. Theory of two-dimensional melting. Phys. Rev.
Lett., 41:121–124, 1978.

[41] Paul J. Steinhardt, David R. Nelson, and Marco Ronchetti. Bond-orientational order
in liquids and glasses. Phys. Rev. B, 28:784–805, 1983.

[42] Albert P. Bartók, Risi Kondor, and Gábor Csányi. On representing chemical envi-
ronments. Phys. Rev. B, 87:184115, 2013.

[43] Jörg Behler and Michele Parrinello. Generalized neural-network representation of
high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98:146401, 2007.

[44] Jörg Behler. Atom-centered symmetry functions for constructing high-dimensional
neural network potentials. J. Chem. Phys., 134(7), 2011.

[45] Ralf Drautz. Atomic cluster expansion for accurate and transferable interatomic
potentials. Phys. Rev. B, 99:014104, 2019.

[46] Tom Darden, Darrin York, and Lee Pedersen. Particle mesh ewald: An n log (n)
method for ewald sums in large systems. J. Chem. Phys., 98(12):10089–10092, 1993.

	Simulating the NVE Ensemble
	Early History of Computer Simulation
	Molecular Dynamics Simulation
	A First MD Simulation under the NVE Ensemble
	The MD Workflow
	Initialization
	Interatomic Interaction: The Lennard-Jones Potential
	Integration

	Code Implementation and Testing
	Problem Setup
	The Python Code for NVE MD Simulation

	Summary

	Thermostat in the NVT Ensemble
	Motivation
	Extension to NVT by Allowing Heat Exchange
	Intuitive Thermostats
	The Anderson Thermostat
	The Langevin Thermostat
	Comparison

	Statistical Physics Perspective
	Partition Function of the Extended System
	The Nose-Hoover Thermostat
	Code Implementation
	Summary

	Barostat in the NPT ensemble
	Motivation
	The Berendsen Barostat
	The Parrinello-Rahman Barostat
	NPT Code Implementation
	Summary

	MD Simulation with LAMMPS
	Introduction to LAMMPS
	Why is LAMMPS Efficient?
	Input and Output Files
	LAMMPS Input Files
	LAMMPS Output Files

	Simulation Process
	Post-Processing
	Running LAMMPS on HPC
	MD simulations of Argon via LAMMPS
	Summary and Further Tasks

	MD Structural Characterization
	MD Trajectory Visualization
	Radial Distribution Function
	Physical Meaning and Applications
	Computation of RDF

	Vibration Spectrum
	Vibration Frequency of a Single Harmonic Oscillator
	Python Simulation of Harmonic Oscillators
	Many oscillators

	LAMMPS Simulation of RDF and VDOS
	LAMMPS Setup
	Plotting RDF, VACF and VDOS

	Summary

	Transport Processes
	Diffusion
	The Green-Kubo Relation
	Alternative Expression of MSD
	The General Green-Kubo Relation
	Thermal Conductivity
	Transport Properties from Equilibrium MD

	LAMMPS Calculation and Analysis
	LAMMPS Setup
	Results Analysis

	Summary

	Enhanced Sampling with Metadynamics
	What is Metadynamics?
	MD and Metadynamics in an 1D Potential Well
	How does Metadynamics Work?
	Choice of CVs
	Well-Tempered Metadynamics
	Advantages of Well-Tempered Metadynamics
	Further Discussions

	Introduction to Density Functional Theory
	Schrödinger Equation
	The Single-Electron System
	Kinetic Energy Operator
	Solution of a 1D System
	Solution of a 3D System

	Density Functional Theory for Many-Electrons
	The Kohn and Hohenberg Theorems
	The Kohn-Sham Equations
	Effective Potential in Kohn-Sham Equations
	Iterative Update of Electron Density
	Practical Workflow

	Summary

	DFT Simulation of the Hydrogen Molecule
	Basic Setup
	Effective Potentials
	External Potential
	Hartree Potential and Energy
	Exchange and Correlation

	Python Implementation
	Physical Interpretation
	Summary

	Efficient DFT via the Localized Basis Set
	The Slater-type Orbital Basis Set
	Numerical Behaviors
	Limitations

	Gaussian-type orbitals
	Linear Combination of Multiple Gaussian

	Other flavors of Basis Sets
	Mathematical Properties of Gaussians
	Integral of Single Gaussian
	Integral of Gaussian Product
	Inverse R integral and the Boys Function
	Two-electron Integral

	Solving the Hydrogen Molecule with STO-3G
	STO-3G basis for a H2 molecule
	Density Matrix and Electron Density
	Overlap Matrix
	Kinetic Energy
	External Potential
	Hartree Potential
	XC potential
	Orthogonalization and SCF

	PySCF Exercise in simulating H2
	Python Code Implementation from the Scratch
	Initial Planning
	The GTO class
	Hartree Potential
	LDA Exchange
	SCF class

	Conclusions

	Electronic Structure of the Periodic System
	The Bloch Theorem
	The Tight Binding Model
	Solution of 1D monoatomic crystal
	Solution of 1D diatomic crystal
	Remarks on the Tight Binding Model

	The Plane Wave Model
	Using Plane Waves as the Basis Set
	The Numerical Solution

	Extension to 3D system
	Reciprocal Lattice in 3D
	3D Hamiltonian on the Plane Wave Basis

	Energy Bands and Brillouin Zone
	Energy Bands
	The Brillouin Zone
	Practical Band Structure Visualization

	Empirical Pseudopotential Method
	Structure Factor of Representative Structures
	Application to the Diamond Crystal
	Model Hamiltonian
	Python Implementation

	Summary

	DFT Simulation of Crystals with Plane Waves
	Pseudopotentials
	Norm-Conserving Pseudopotentials
	The Goedecker-Teter-Hutter Pseudopotential
	Pseudopotential at the reciprocal space
	Expression of Structural Local Potentials
	The Example of Si's GTH potential

	Brillouin Zone Sampling
	Hamiltonian on the Plane Wave Basis
	Kinetic Operator and Energy
	Pseudopotential and energy
	Hartree Potential and Energy
	Exchange and Correlation
	Conversion between Real and Reciprocal Space
	Nuclear–Nuclear Interaction

	Diagonalization
	The Davidson Approach
	Alternative Approaches

	Self-Consistent Field
	A Plane Wave DFT Code for Silicon
	Initial Planning
	Structure and Plane Wave Setup
	Pseudopotential Setup
	The Hamiltonian Class
	Test Run and Results Analysis
	Limitation and Possible Extensions

	Forces and Stress Tensors
	Forces on Atoms
	Stress Tensors

	Summary

	Phonon Calculation
	A Simple Spring
	The 1D Infinite Monoatomic Chain
	Solution
	Choice of q for Infinite and Finite systems
	Physical Insights

	The 1D Diatomic Chain Model
	Equation of Motions
	Solutions
	Dispersion Relation and Mode Analysis
	The Dynamical Matrix Approach

	Extension to Realistic Systems
	Revisiting the Diatomic Chain Model
	Special Case at q=0
	Application to the 3D System
	Phonon Density of States

	Application to FCC Argon
	System Setup
	From Force Constants to Dynamical Matrix

	Python Implementation
	Summary and Outlook

	Representing Local Atomic Environment
	Orientational Order Parameter
	Orientational Order in a 2D System
	Extension to 3D: Neighbor Density Function
	Expansion on the Spherical Harmonics
	Rotation-Invariant Parameters
	Applications and Limitations

	Manybody descriptors
	Radial Dependent Power Spectrum Descriptor
	Bispectrum on 4D Hyperspace
	Atomic Cluster Expansion

	Code Implementation
	Reference environments
	The Bond Order Parameters
	The Powerspectrum Descriptor
	The ACE Descriptor

	Applications
	Conclusion and Further Discussions

	Linear Algebra and Python Implementation
	Vector and Matrix
	Norm, Determinant and Inverse
	Multiplications
	Inner and Outer Product
	Dirac Notation
	Eigenvalue Problem
	Numerical Computation in Python
	Advanced Usage Python

	Spherical Harmonics
	Mathematical Definition
	Examples of Real Spherical Harmonics
	The Real Valued Spherical Harmonics
	Calculation with Python

	Ewald Summation
	Motivation
	Decomposition of 1/r
	Total Energy and Its Correction
	Practical Setting of Parameters
	Python Ewald Simulation for a Silicon Crystal
	Particle Mesh Ewald Summation

	Wigner-D matrix and Clebsch-Gordan Coefficients
	Introduction
	Wigner-D matrix
	Properties of the Wigner-D Matrix

	Clebsch-Gordan Coefficients
	Python Computation

	List of Popular Codes and Tools
	DFT packages
	Classical MD packages
	Tight-binding Packages
	Phonon Packages
	Visualization Packages
	Tools for Structure Manipulation and Analysis
	Online Database
	Miscellaneous Resources

