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1 Introduction

Structure is the most fundamental characteristics of a material. X-ray
crystallography allows one to determine how atoms are arranged in a
molecule and how molecules pack into a crystal. However, it requires a
high-quality crystal sample, which is time consuming to prepare and
often impossible under extreme conditions.

Theory has been playing a significant role in understanding crystal
structures. Pauling summarized the rules for crystal structures of ionic
solids,1 however, similar powerful rules are still lacking for metals. First
attempts to use computers to predict crystal structures date back to 1980.
Although not very successful at the beginning,2,3 crystal structure pre-
diction (CSP) began to play an important role nowadays, thanks to many
progresses in the last decade.4–13 Indeed, mathematicians have de-
veloped algorithms to solve similar problems. Some of them are quite
general and thus could be applied to crystal structure prediction. One can
refer to a recent book14 for a discussion of different methods. In this
chapter, we will briefly introduce the modern structure prediction tech-
niques, and review the recent developments in the context of the USPEX
method, which is based on the evolutionary algorithm (EA), and has been
viewed as a revolution in crystallography.15 Discussions here follow
closely the previous literature,16–18 with primary focus on the most recent
developments.

2 Methodology

2.1 Global optimization methods
Several global optimization algorithms have been devised and used with
varying degree of success in structure prediction, for instance, simulated
annealing,4,5 metadynamics,6,7 genetic and evolutionary algorithms,8,13

random sampling,9 basin hopping,10 minima hopping,11 and data min-
ing.12 Most of the methods mentioned above are developed to predict
inorganic crystals and nano-clusters. However, the same philosophy can
be applied to organic crystals19–23 and proteins24 as well.
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Strictly speaking, all of the above methods (except metadynamics and
data mining) are stochastic methods, thus they possess some inherent
randomness. It is not guaranteed the one would obtain the same solution
even by starting with the same set of parameter values. The divergence
depends on the complexity of the landscape.

One either has to start already in a good region of configuration space
(so that no effort is wasted on sampling poor regions) or use a ‘‘self-
improving’’ method that locates, step by step, the best structures. The
first group of methods includes metadynamics, simulated annealing,
basin hopping, and minima hopping approaches. The second group es-
sentially includes evolutionary algorithms. Alternatively, data mining
approaches use advanced machine learning concepts and predict the
structures based on a large database of known crystal structures.12

Among all these groups of methods, the strength of evolutionary simu-
lations is that they do not require any system-specific knowledge except
chemical composition, and are self-improving, i.e., in subsequent gen-
erations increasingly good structures are found and used to generate new
structures.

2.2 Energy landscape
Before talking about the prediction of the crystal structure, let us first
consider the energy landscape that needs to be explored. The dimen-
sionality of the energy landscape is:

d¼ 3Nþ 3, (1)

where 3N� 3 degrees of freedom are from N atoms, and the remaining
six dimensions are defined by the lattice. CSP is an NP-hard problem, i.e.,
the difficulty increases exponentially with dimensionality. Yet, drastic
simplification can be made if structures are relaxed, i.e. brought to the
nearest local energy minima. Relaxation introduces intrinsic chemical
constraints (bond lengths, bond angles, avoidance of unfavorable con-
tacts). Therefore, the intrinsic dimensionality can be reduced:

d*¼ 3Nþ 3� k, (2)

where k is the number of correlated dimensions, which could vary greatly
according to the intrinsic chemistry in the system. For example, the di-
mensionality drops greatly from 99 to 11.6 for Mg16O16, while only
slightly from 39 to 32.5 for Mg4N4H4.16 Thereby, the reduced difficulty of
the problem (i.e., the number of possible structures) is reduced:

C*¼ exp(bd*). (3)

This implies that any efficient search method must include structure
relaxation (local optimization). We also note that all global optimization
methods rely on the assumption that the reduced energy landscape will
have a well-organized overall shape (Fig. 1), which is often true for
chemical systems.28
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2.3 Evolutionary algorithm
Evolutionary algorithms (EA) mimic Darwinian evolution and employ
natural selection of survival of the fittest and variation operators in-
cluding genetic heredity and mutations. It is a stochastic method which
is used to solve problems in which there exist many possible solutions for
minima. The EA procedure is as shown in Fig. 2:

(1) Initialization of the first generation, that is, a set of structures
satisfying the hard constraints are randomly generated;

(2) Perform structural relaxation and determine the quality (fitness)
for each member of the population;

(3) Selection of the high-fitness members from the current generation
as parents, from which the new generation is created by applying spe-
cially designed variation operators;

(4) Repeat steps 2–3 until the halting criteria are achieved;
(5) The above algorithm has been implemented in the USPEX

(Universal Structure Predictor: Evolutionary Xtallography) package.13–17

2.4 Representation, fitness and variation operators
During evolution, it is important to keep the good structural features
from the old generations to the next population. In traditional genetic
algorithms, the investigated systems are usually expressed as an array of
bits (chromosome), where each bit (gene) represents a different object.
This representation behaves like DNA, and is quite convenient for

Fig. 1 An illustration of the simplified illustration of energy landscape. The idea of local
optimization is to transform the noisy acted landscape (solid line) to a bowl-shaped
reduced landscape (dashed line).

Chem. Modell., 2016, 12, 219–248 | 221

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

N
ev

ad
a 

- 
L

as
 V

eg
as

 o
n 

04
/0

5/
20

17
 0

4:
50

:2
3.

 
Pu

bl
is

he
d 

on
 1

8 
N

ov
em

be
r 

20
15

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

27
03

-0
02

19
View Online

http://dx.doi.org/10.1039/9781782622703-00219


variation operations (heredity and mutation). However, the disadvantage
is that it involves encoding and decoding processes, which make it in-
convenient to be applied to chemical systems, and most importantly,
structural information is lost rather than transferred from parents to
offspring. Deaven and Ho employed a real-space representation, and
successfully applied it to the prediction of clusters.27 The real-space
representation in terms of Cartesian or fractional coordinates is more
straightforward, and physically more meaningful. And USPEX adopts the
real space representation as well.

The Fitness function mathematically describes the target direction of
the global search, which can be either a thermodynamic fitness (to find
stable states) or a physical property (to find materials with desired
properties).

We rank structures by fitness values, a certain fraction of worst
structures are discarded, and the rest are given a chance to be chosen as
parents in the selection stage. The probability of the survived structures
being chosen as a parent increases with the quality of a structure.

An essential step in an EA is to deliver the good genes to the next
population, while introducing some variation. In USPEX, it is done via
variation operators.

Heredity is a core part of the EA approach, as it allows communication
between different trial solutions or classes of solutions by combining
parts from different parents. In USPEX, to generate a child from two
parents, the algorithm firstly chooses a plane which is parallel to one
lattice plane, and then cuts a slice with a random thickness and random
position along the other lattice vector; such slices from two parent
structures are then matched to form a child structure. In this process, the
number of atoms of each type is adjusted to ensure conservation of
chemical composition.

Fig. 2 The EA implemented in the USPEX code for crystal structure prediction.
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Mutation operators use a single parent to produce a child. Lattice
mutation applies a stain matrix with zero-mean Gaussian random strains
to the lattice vectors; soft-mode mutation (which we call softmutation for
brevity from now) displaces atoms along the softest mode eigenvectors,
or a random linear combination of softest eigenvectors; the permutation
operator swaps chemical identities of atoms in randomly selected pairs of
unlike atoms.

A general challenge for global optimization methods is to avoid getting
stuck in a local minimum and thus skip the global minimum. To prevent
this, the key is to control the diversity of the population, by preventing
proliferation of very similar structures and by adding new blood. For the
latter purpose, we produce some fraction of each generation with the
random symmetric structures.

Last, a certain number of best structures in the current generation
(best individuals) are intentionally transferred to the new generation, and
compete with others.

2.5 Fingerprints: a metric of structural similarity
In a global structure search, very similar structures always appear fre-
quently. Duplicate structures do not only create inconvenience in post-
processing, but also lead to the situation that the search is ‘trapped’ in
some local minimum but not the ground state. Therefore, a technique to
measure the similarities between structures is needed. In USPEX, we use
the so-called fingerprint function28 to describe a crystal structure. It is
very similar to pair distribution function (PDF), which for an elemental
solid is:

PDFðRÞ¼
X

i

X

j a i

1

4pR2
ij

N
V
D
dðR� RijÞ (4)

where Rij is the distance between atoms i and j, V is the unit cell volume,
N is the number of atoms in the unit cell, and D is a bin width (in Å). The
index i goes over all atoms in the unit cell and index j goes over all atoms
within the cutoff distance from the atom i. The PDF at long distances
oscillates around the value þ1, which is not convenient for our purposes,
and we subtract this ‘‘background’’ value for convenience. Generalizing
to systems containing more than one atomic type, we introduce finger-
print as a matrix, the components of which are fingerprint functions for
A–B type distances:

FABðRÞ¼
X

Ai;cell

X

Bj

dðR� RijÞ

4pR2
ij

NANB

V
D
� 1 (5)

One can measure the similarity between two structures by calculating
the cosine distance between two fingerprint functions,

dij ¼ 0:5 � 1�
FiFj

Fij j Fj

�� ��

 !
(6)
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Using this new crystallographic descriptor, we can improve the selec-
tion rules and variation operators above. During the selection process,
only one copy of each distinct structure is used, and all its duplicates are
killed. Fingerprint theory brings many other benefits (quantification and
visualization of energy landscapes, use of ordered fragments of crystal
structures, etc.).25 However, it should be noted that the fingerprint
function might be revised for different systems, in order to separate
structures better. For instance, intramolecular contributions in finger-
print are identical for all different packing of the same molecule and thus
decrease the discriminatory power of the fingerprint function (Fig. 3).
Therefore, we only consider the intermolecular distances in the compu-
tation of the fingerprint function when dealing with crystals made of
molecules with the same conformation.26

2.6 General choices of EA parameters
In any implementation of EA, the choices of parameters might lead to a
different performance of the algorithm. Such parameters include: popu-
lation size, number of generations, fractions for each variation operation.
From our experience, a good choice of the population size should be B2
times of the number of atoms in the studied system, and the percentages
should be 50%–70% for heredity, 20% for different types of mutations,
and 15%–30% for random structures, respectively. Typically, such

Fig. 3 Fingerprint distance distribution over 1000 structures from a typical USPEX
simulation of 4 urea molecule per unit cell, when (a) including all distances (b) excluding
intra-molecular distances in the fingerprint calculation for each individual structure.
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settings would be quite efficient. Therefore, we set another parameter
(stopCrit) to stop the calculation if the best structure does not change for
a given number of generations. We usually set 20 for stopCrit for system
less than 40 atoms. However, larger values would be needed for larger
systems.

A more rigorous way is to assign the fractions of the variation operation
according to their performances during the calculation. In the current
version of USPEX adopts the following strategy.

(1) At the end of each generation i, we discard identical structures, and
select structures according to the fitness ranking;

(2) Within the selected structures, we count the origin of each struc-
ture, and obtain the fraction fi*;

(3) Set fi11¼ (fiþ fi*)/2 for the next generation;
(4) In order to make it more robust, we also set the lower bound for

those variation operations which have been proved very important from
our experience. Here we put the minimum of 20% for heredity, 10% for
random, 10% for softmutation.

According to our tests, the new scheme will generally enhance the
searching efficiency by up to 2 times.

3 Recent developments

In the past years, we have extended structure prediction techniques to a
broad range of systems. In this section, we will discuss the most recent
developments. In order to give a complete demonstration, some develop-
ments which have been reviewed previously will be also briefly mentioned.

3.1 Choices of fitness functions
Traditional structure prediction is aimed at finding the structure with the
lowest energy. Therefore, the fitness function is often defined as the
energy or enthalpy. However, one can define the fitness in various ways,
based on different applications. For instance, physical properties such as
density, hardness and dielectric constants, can be used as the search
criterion.29–32 In these cases, a strategy of hybrid optimization is needed,
that is, we search for the global optimum with respect to fitness, con-
sidering only structures corresponding to local energy minima. On the
other hand, the so-called variable-composition prediction uses a modi-
fied energy criterion to evaluate the quality of structures over the whole
allowed compositional space. In this case, stability of each individual can
be defined as its decomposition energy relative to the easiest de-
composition path.33

3.2 Low-dimensional systems
Comprehensive extensions of structure prediction in the most recent
years are devoted to the low-dimensional systems, which include nano-
particles, two dimensional (2D) crystals, and surface reconstructions.
For consistency with most widely used electronic structure codes, we treat

Chem. Modell., 2016, 12, 219–248 | 225
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the problem with periodic boundary conditions, by adding vacuum to
eliminate the interactions with periodic images. Therefore, we have two
types of cell representations in EA. Here the small cell represents the
structure we want to optimize (excluding vacuum and substrate, this is
the cell where variation operators work), and the big cell represents all
the structural information (including vacuum and substrate, needed in
structure relaxation) (Fig. 4).

3.2.1 Clusters. Several methods have been applied to cluster struc-
ture prediction.11,27 Schönborn et al. translated the original version of
the USPEX method to predict clusters.34 However, with some new de-
velopments, this can perform even better.17 The algorithm works as fol-
lows. The user gives a list of possible point groups (like, for example,
C2, D6h, etc.) and nanoparticles are generated by randomly placing
atoms inside the ellipsoid inscribed in the ‘‘small cell’’, and then repli-
cating them using the point group symmetry operators. When the clus-
ter is generated or relaxed, we place it in the center of the cell and
rotate it so that principal moment of inertia axis with the highest mo-
ment is pointed in the z-direction. The ‘‘big cell’’ is then constructed
by adding a certain amount of vacuum in all directions. The thickness
of the vacuum region around the cluster is a user-defined parameter;
more vacuum means more accurate results, but (for some approaches,
such as plane-wave methods) greater computational costs. When inter-
faced with codes based on local basis set methods, the thickness does
not strongly affect the ab initio calculation; however, it would be still
convenient for performing the variation operations (such as heredity
and lattice mutations). Before performing a ‘cut-and-splice’ heredity,
the cut plane is randomly rotated around a random axis that goes
through the center of mass of the nano-particle. This idea is similar to
random ‘shifts’ for heredity in crystal structure prediction.

3.2.2 2D crystals. In recent years, 2D or quasi-2D materials have
attracted great interests for their fascinating properties. Graphene,

Fig. 4 Two sets of cells in various low-dimensional systems. The small cells (highlighted
in shadow) are used for global optimization, while the big cells (the whole structure model)
are used for ab initio calculation.
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a single layer of carbon atoms with honeycomb configuration, has been
widely studied due to its novel electronic properties (massless Dirac fer-
mions, etc.). It has rapidly become a candidate for the next generation
of faster and smaller electronic devices. Besides graphene, other 2D-
crystals (such as MoS2) with excellent properties were also discovered.35

Quite recently, a systematic strategy for searching for flat 2D-crystals
based on particle swarm optimization algorithm was proposed and ap-
plied to the B–C system.36 However, it was later found that constraint
of flat configuration will miss a number of meaningful systems. Thus,
it was later extended to search for both 2D and quasi-2D materials.37

In USPEX, we allow the non-planar configurations, and describe the
system as a slab with a certain thickness. To initialize, the slabs of the
2D-crystal (small cell) are generated by random plane groups, and then
the big cell is constructed by adding vacuum along the c-axis. After re-
laxation, we extract the slab from the big cell and apply the variation
operators such as heredity and mutation. This allows one to explore
more complex structures.

One must keep in mind that a 2D-crystal is always metastable and if
allowed, will grow into a 3D-crystal. In other words, the greater the
thickness is allowed, the lower-energy structures can be found. Thus, 2D-
crystals give an example of constrained optimization, where the final
results are determined by the constraint.

3.2.3 Surfaces. In practical calculations, the surface model includes
three parts: vacuum, surface and substrate. Vacuum and substrate re-
gions are pre-specified, while the surface region is optimized by the
EA.38 The number of surface atoms varies from zero to a given max-
imum number. Meanwhile, the cell size is also variable, in order to ex-
plore more complex reconstructions involving multiple unit cells. The
fitness function needs to indicate the relative stability of structures
with various surface stoichiometries and reconstruction cell sizes. We
construct the fitness function based on the surface energy.

Eformation¼ Etotal � Eref �
X

i

nimi; (7)

where Etotal and Eref are the total energy of the surface under con-
sideration and of the reference cleaved surface; ni and mi are the number
of atoms and chemical potentials for each species. The chemical po-
tential is the energy needed to add or remove one atom from the system,
assuming there is a reservoir for each species to equilibrate with. For a
simple binary compound (AB), if m(A) is extremely high, the elemental
phase A would condense on the substrate. Therefore, the chemical
potentials must satisfy constraints under equilibrium conditions as
follows,

mðAÞ� mðA0Þ;

mðBÞ� mðB0Þ;

mðAÞ þ mðBÞ¼GðABÞ:

(8)
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At 0 K, the Gibbs free energy reduces to the internal energy E(AB).
Therefore, the chemical potential is bounded by

E(AB)� m(B0)r m(A)r m(A0). (9)

Thus Eformation can be rewritten as dependent only on m(A)

Eformation¼ Etotal� Eref� nBE(AB)� m(A)(nA� nB) (10)

This method can be employed in different ways (1) fixed number of
surface atoms and cell size; (2) fixed number of surface atoms and vari-
able cell sizes; (3) both variable surface atoms and surface unit cells. Here
we emphasize the case of variable surface stoichiometry, as illustrated in
Fig. 5. First, for two given surface configurations (I and II) which have
different numbers of atoms on the same substrate cell, their relative
energy differences is a function of the chemical potential m(A) according
to eqn (7). As shown in Fig. 5, surface I is stable when mmin rm(A)rmeq,
while surface II is stable when meqr m(A)rmmax. For any other unstable
configuration, fitness can be viewed as the minimum energy difference
compared with the stable configuration. The minimum condition is
reached when m(A)¼ meq. It is useful to express it algebraically. Similar to
Qian’s work,39 we define a term E0 which is invariant to m(A):

E0¼ Etotal� Eref� nBE(AB) (11)

Versions (a) and (b) in Fig. 5 contain equivalent information. Stable
structures appearing on the phase diagram form a convex hull in energy-
composition coordinates. The slope of each section in the convex hull is
either the boundary chemical potential, or the equilibrium chemical po-
tential in which stable configurations can coexist. Therefore, we can choose
the fitness of a structure to be its distance to the convex hull. The EA search

Fig. 5 Illustration of the fitness function used in surface prediction with variable stoichi-
ometry in binary AB system. (a) Phase diagram as a function of m(A). (b) Phase diagram as a
function of (nA–nB). The vertices of the convex hull are the stable structures appearing in
the phase diagram. The slope of each section is either the boundary chemical potential or
the equilibrium chemical potential where stable structures coexist.
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then aims to optimize the convex hull. When comparing structures with
different surface cell sizes, the energies should be normalized.

3.3 Prediction of molecular crystal structures
The capability to predict molecular crystal structures has been imple-
mented in the USPEX package since 2012.26 When we adapted EA to
organic systems, some concerns need to be addressed.

(1) Metastablity. Most of the molecular compounds are thermo-
dynamically less stable than the simple molecular compounds from
which they can be obtained (such as H2O, CO2, CH4, etc.). This means
that a fully unconstrained global optimization approach will produce
only a mixture of these simple molecules, instead of the target molecular
compounds of interest.

(2) Weak interactions. In organic crystals, packing largely depends on
the weak inter-molecular interactions, such as hydrogen bonds and van
der Waals interactions. These interactions are much weaker and softer
than covalent bonds. Therefore, it leads to a very sparse molecular
packing and a flat energy distribution in the real space. In this case, a
method containing both efficient structural search and accurate energy
ranking is needed.

(3) Symmetry preference. The distribution of structures over symmetry
groups is very uneven. Most organic crystals are found to possess space
groups: P21/c (36.59%), P-1(16.92%), P212121(11.00%), C2/c(6.95%).40

In order to apply EA to organic systems, it is essential to impose con-
straints, by fixing the bond connectivity and rigid angles; this can be con-
veniently done when molecular geometry is represented by internal
coordinates (bond length, bond angle, torsional angle).26 Here we introduce
two other types of constraints which can be made for different systems.

3.3.1 Linear polymers. In most of the polymeric crystals, the struc-
ture can be viewed as packing of polymeric chains. Provided the chain
conformation is known, their packing can be described by (1) relative
positions of chains; (2) rotational degrees of freedom associated with
the lateral groups; (3) the orientation of the chains. For linear poly-
mers, the mutual orientation of the chains can only be either parallel
or anti-parallel. As shown in Fig. 6, we assemble the polymeric chains
from the monomers by ensuring the neighboring contacts of these
bridging atoms are close to the real situation (in terms of bond length
and bond angle). Mathematically, the chain’s orientation can be deter-
mined by the vector between the geometric centers of two connected
monomers, C–C0. Thus we can reorient the linear chain in the (001) or
(00-1) direction. In the structure initialization stage, we create a 2D
primitive cell in the a–b plane for the geometric centers, according to
the randomly assigned plane group symmetry. Then the c-axis is de-
fined by the length of the chain, and the monomers are arranged either
up and down around the centers in the 3D unit cell. Accordingly, the
rotational axis is always fixed to the c direction. This linear chain mode
has been applied to study the polymorphism of various systems such

Chem. Modell., 2016, 12, 219–248 | 229

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

N
ev

ad
a 

- 
L

as
 V

eg
as

 o
n 

04
/0

5/
20

17
 0

4:
50

:2
3.

 
Pu

bl
is

he
d 

on
 1

8 
N

ov
em

be
r 

20
15

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

27
03

-0
02

19
View Online

http://dx.doi.org/10.1039/9781782622703-00219


Fig. 6 Structure initialization of linear polymeric crystals. C and C0 are the geometric centers of monomers. The monomers are assembled in such a way that the
C–C0 connections are parallel or antiparallel to the c-axis of the cell. The operations of translation and rotation will strictly act along c-axis.
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as poly(vinylidene fluoride) PVDF, and it proved to significantly speed
up the searching process.41

3.3.2 Symmetry-preserving operations. Based on the fact that the
symmetry distribution of organic crystals is very uneven, we design the
mutation operators that keep the original symmetry. Since we generate
the initial structures with random space groups, we keep the track of
the asymmetric units and the corresponding symmetry operations. Dur-
ing mutation, we only perform mutations on those asymmetric units
and then reconstruct positions and orientations of the remaining mol-
ecules by symmetry operations. As shown in Fig. 7, this operator can ef-
ficiently generate structures close to ground state even from a structure
with high energy. However, one should use it with caution, as new sym-
metries are harder to find.

4 Applications

Structure prediction techniques have become increasingly important in
materials research. In this section, we will focus on the applications in
materials sciences, based on the methodology described above.

In all the calculations described below, global optimizations were done
by the USPEX code, and the VASP code42 was employed for local opti-
mization (i.e. structural relaxation), using the PBE exchange-correlation
functional43 and the PAW method.44 For the soft materials, van der Waals
(vdW) dispersion and hydrogen bond are crucial factors in determining
the crystal packing. There have been major efforts in improving the ac-
curacy of vdW functional.45,46 Here we use the Tkatchenko–Scheffler
method47 and optPBE8848 functional which have proved to give results in
satisfactory agreement with experimental data.49

4.1 Materials missed in the experiments: CsFn compounds
Many materials exhibit quite complex chemistry under extreme con-
ditions. Theoretical prediction plays an increasingly important role in
this field. A number of new stroichiometric compounds have been

Fig. 7 Illustration of the symmetry-preserving rotational mutation in the case of aspirin.
The parent structure has one asymmetric unit (Z0 ¼ 1) in P21/c space group. The child
structure is obtained by randomly changing the orientation of one molecule in the parent
structure, while the rest molecules are generated according to the symmetry operations.
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predicted50–56 and even confirmed by experiments.51 On the other hand,
there should be vast opportunities to discover new compounds even
under ambient conditions as well. For example, many possible inorganic
materials that consist of three or more elements are not studied yet. More
surprisingly, chemical space of even a restricted subclass of materials
made of two elements is far from being exhausted. Recent studies show a
lot of brand new binary compounds which have not been reported
yet.57–60 For instance, our recent work predicted four viable ground-
state compounds, with MnB2, MnB, MnB4, and another previously never
reported MnB3. Stimulated by the simulation results, the further ex-
periments were able to verify them by annealed samples.59 Similarly, in
the well known Hf–C system, two additional compounds Hf3C2 and Hf6C5

were predicted to be stable.57 Therefore, the systematic variable com-
positional predictions for those materials of interests are in great need.

Here we illustrate the power of the variable-composition prediction by
its application to the Cs–F system.61 Alkali halides MX have been viewed
as typical ionic compounds, characterized by 1 : 1 ratio necessary for
charge balance between M1 and X�. It was proposed that group I elem-
ents like Cs can be oxidized further under high pressure.56 We perform a
comprehensive study of the CsF–F system at pressures up to 100 GPa,
and found extremely versatile chemistry.61 Our calculation uncovers
quite a different scenario (Fig. 8) from Miao’s report.56 A series of

Fig. 8 The pressure-composition phase diagram of the CsF–F system and the corres-
ponding stable crystal structures.
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CsFn (n41) compounds are predicted to be stable already at
ambient pressure. Under pressure, 5p electrons of Cs atoms become
active, with growing tendency to form Cs (III) and (V) valence states at
fluorine-rich conditions. Although Cs (II) and (IV) are not energetically
favored, the interplay between two mechanisms (polyfluoride anions and
polyvalent Cs cations) allows CsF2 and CsF4 compounds to be stable
under pressure.

Surprisingly, already at ambient pressure several stoichiometric com-
pounds (CsF2, CsF3 and CsF5) are calculated to be thermodynamically
stable. The estimated defluorination temperatures of CsFn compounds
at atmospheric pressure (218 1C, 150 1C, �15 1C, respectively), are at-
tractive for fluorine storage applications. Light halogens, fluorine (F) and
chlorine (Cl), at normal conditions are highly reactive and toxic gases. For
chemical industry and laboratory use, this presents great inconvenience.
Their storage in the gaseous form (even as liquefied gases) is very in-
efficient, and compressed gas tanks may explode, presenting great dan-
gers. At normal conditions, the volume of 22.4 litres (L) of pure fluorine
gas weighs just 36 grams (g), illustrating the dismal inefficiency of stor-
age in this form. To the best of our knowledge, no effective and safe
fluorine storage materials are known. Both F and Cl have a huge range of
industrial applications, which would benefit from such storage materials,
especially if they can achieve high storage capacity, stability and revers-
ibility (Table 1).

4.2 Property optimizations – HfO2–SiO2

As we discussed above, crystal structure search can be also property-
oriented within the framework of hybrid optimization. In this case, the
candidate structures should be locally optimized by energy, and globally
selected and operated with respect to the target properties. Following this
track, researchers have made significant steps towards to the materials
design by properties (including density,29 hardness,30,62 band gap,31,63

and so on). In such studies, the fitness function should be properly
defined. Here we illustrate it by the example of searching for high-k
dielectric materials.32

High-k dielectric materials are important as gate oxides in micro-
electronics and as potential dielectrics for capacitors. In order to enable
computational discovery of novel high-k dielectric materials, we propose
a fitness model (energy storage density) that includes the dielectric

Table 1 Investigated reactions of the CsF–F system at ambient pressure conditions. The
wt% gives the weight content of released F2 gas. DH0 K and DH300 K are the calculated
enthalpies at T¼0 K and 300 K, including the vibrational energies in kJ mol�1. DS300 K is the
corresponding formation entropy in J (K mol)�1. Tc is the predicted decomposition
temperature at standard atmosphere (1 bar). Note that F2 is treated as crystalline solid at 0 K.

Reactions wt% DH0 K DH300 K DS300 K Tc(1C)

CsF2¼CsFþ 1/2F2(g) 11.1 44.30 37.59 78.25 218
CsF3¼CsFþF2(g) 20.0 72.24 63.41 152.29 150
CsF5¼CsFþ 2F2(g) 33.3 88.41 76.73 284.96 � 15
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constant (k) and an intrinsic breakdown field Ebd, and expressing the
latter through the bandgap (Eg), we obtain the following formula,

FED¼
1
2
e0kE2

bd¼ 8:1882 J cm�3 � k
Eg

Egc

� �2a

; (12)

where Egc¼ 4.0 eV, the critical bandgap value separating materials into
semiconductors and insulators, and e0 is the absolute permittivity of the
vacuum. With this new fitness descriptor, we can simultaneously account
for the dielectric constant, bandgap, and breakdown field during opti-
mization, in a rational and comprehensive way. Remarkably, the same
fitness can be used to search for optimal dielectric materials for cap-
acitors and gate oxide materials.

We found a number of high-fitness structures of SiO2 and HfO2, some
of which correspond to known phases and some of which are new. Our
variable-composition searches in the HfO2–SiO2 system also uncovered
several high-fitness states. The compositional dependences of enthalpy
of formation and energy density are illustrated in Fig. 9. The highest FED
is shown at each composition. The relationship between compositions
and energy density appears to be intriguing (recall that two physical
properties Eg and k, display quite different variation with respect to
composition). A high concentration of HfO2 does not necessarily result in
high energy storage. As an example of a disordered structure, we take
Hf0.9Si0.1O2 (Hf9SiO20) with a relatively large unit cell containing 30
atoms; its dielectric permittivity is relatively high (22.11), but its low Eg

(3.02 eV) results in very low fitness (33.93 J � cm3). Ordered phases seem to
be superior in terms of their fitness. Among the pseudobinary com-
pounds, the best fitness values are seen for Hf0.5Si0.5O2 (I41/amd) and
Hf0.75Si0.25O2 (I-42m); their fitness is three times greater than that of SiO2

quartz. Clearly, further improvements are possible by considering other
systems. The methodology and principles presented here allow a sys-
tematic search for such improved materials.

4.3 Nano clusters: B36 and LJ44

Baturin et al. have applied this method to predict the atomic structure
and stability of small silicon nanoclusters passivated by hydrogen.64

Recently, the B36 clusters which was synthesized and theoretically stud-
ied by Wang et al.65 Here we applied this method and reproduced the
most two stable structures B36–C6v and B36–D4h within 10 generations
(30 structures per generation). One can clearly see that B36 clusters prefer
to adopt high-symmetry structures. For instance, its ground state has six-
fold symmetry and a perfect hexagonal vacancy, while the next stable
configuration (B36–D4h) has tetragonal symmetry. It is very important to
note though, the algorithm does not favor only highly symmetric struc-
tures, as shown by tests on the artificial Lenard-Jones systems. LJ44 is an
example of a cluster with a ground state that has no symmetry. As shown
in Fig. 10, the algorithm is still able to identify the ground state even
though we start from random symmetric structures. The reason is that
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Fig. 9 HfO2–SiO2 system: (a) enthalpy of formation, showing stability of hafnon (HfSiO4) and (b) compositional dependence of physical properties.
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Fig. 10 (a) The best two structures found in B36 cluster, C6v and D4h; (b) a typical evolution curve of LJ44 cluster in USPEX simulation, showing the lowest energy in
each generation.
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variation operators in USPEX can break symmetry and enable totally new
structures with different symmetry to emerge.

4.4 2D crystals: boron-based Dirac materials
Boron is a fascinating element because of its chemical and structural
complexity. Recently, a new class of boron sheets composed of triangular
and hexagonal motifs, exemplified by the so-called a-sheet structure, has
been identified to be energetically most stable, and argued to be the
precursor of B80 fullerene.66 However, the stabilities of both a-sheet and
B80 were both challenged.67,68 We explored other potentially stable
structures or structures with novel electronic properties. Contrary to the
general constructing rules for flat monolayer boron sheets (mixing of
triangular and hexagonal patterns),66 great complexity is uncovered with
multilayer structures. The non-flatness of 2D boron sheets enhances its
energetic stability and creates novel electronic properties. In particular,
we found that a 2D-boron with Pmmn symmetry can exhibit anisotropic
Dirac cones,69 after graphene and silicene,70,71 the third elemental ma-
terial with massless Dirac fermions. This property may be superior to that
of graphene, because transport properties of these Dirac fermions will
depend on direction, which gives an additional degree of freedom (with
faster-than-graphene and slower-than-graphene directions) for electronic
applications (Fig. 11).

4.5 Surfaces
4.5.1 Diamond (100), (111). We firstly studied the known 2� 1 re-

constructions of diamond (100) and (111) surfaces, which are the two
most important surfaces for polycrystalline diamond obtained from
chemical vapor deposition (CVD). We tried two and six carbon atoms
on a 2� 1 surface cell.72 Our results are in excellent agreement with
those reported in previous literature. The cleaved diamond (100) sur-
face, containing one unsaturated carbon atom with two dangling
bonds per unit cell, is unstable. Stabilization is achieved via a recon-
struction with surface atoms forming one p-bonded C–C dimer per
2� 1 unit cell. The diamond (111) surface contains two unsaturated
carbon atoms with two dangling bonds per 1� 1 unit cell. Our search
also confirmed the model proposed by Pandey, with surface atoms
forming Pandey chains along the [011] direction.73 From the top
view [Fig. 12(b)], the Pandey chains further form an extended two-
dimensional (2D) network, having the same period as the unrecon-
structed (111) surface. From the side view, the surface atoms together
with the second layer form an alternating (5þ 7)-ring pattern, which is
different from the 6-ring pattern in the bulk, but is similar to the struc-
tures of M-carbon, a metastable carbon allotrope.9

4.5.2 GaN–O (1110). We also studied the semipolar GaN (10-11) sur-
faces in the presence of oxygen,38 in which we allowed both variable
number of surface atoms and variable cell size (restricted to a 2� 2 or
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Fig. 11 (a) Enthalpy evolution for an 8 atom 2D boron system during an evolutionary structure search. The insets shows the structure of a-sheet; (b) the top view
and side view of Pmmn-boron; (c) the band structure of Pmmn-boron; (d) the Dirac cone of Pmmn-boron.
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smaller surface cell). Figure 13 shows the whole phase diagram as a
function of m(O) and m(Ga)-m(N).

Compared to the cleaved surface, structure S1 has two Ga adlayers.
Structure S2 has one Ga adlayer. Structure S3 has the top N and half of
the second N layer removed. Structure S4 has only the top N layer re-
moved. Structure S5 has an additional N at the bridging position of the
two top N atoms. The first four structures were found by Akiyama et al.74

Structure S5 with N3 trimers is not intuitively obvious, and demonstrates
the power of the automated searching by the EA. An analogous Se-trimer
has been predicted to be stable on ZnSe (100) reconstructions in Se-rich
conditions.75 Two additional major reconstructions are structures S6 and
S7, which appear in presence of oxygen. Compared to the cleaved surface,
structure S6 has half of the top N layer removed, and half of the top N and
all of the second N layer replaced by O. Structure S7 has the top two N
replaced by O. Reconstructions similar to S6 and S7 for the (10-11) sur-
face have been reported.76

4.5.3 a-Boron (111) surface. As a neighbor of carbon, boron is in
many ways an analog of carbon and its nanostructures. The carbon sur-
face has been thoroughly studied. In contrast, little is known for boron
surface due to its exceptional structural complexity. Recently, Amsler
et al. performed the first study of the reconstruction of the a-boron (111)
and predicted several low-energy surface reconstructions by using the
minima hopping method. In particular, a metallic reconstructed phase
(111)-IR,(a) was predicted to be the most stable configuration, where a
conducting boron sheet was adsorbed on a semiconducting substrate,
leading to numerous possible applications in nanoelectronics.77 How-
ever, this seems to be in conflict with the general principle the recon-
structions usually lower their energies by atomic rearrangement leading
to a semiconducting (rather than metallic) surface state.78 Addressing
this contradiction, we found an unexpected surface reconstruction in
a-boron (111) using the ab initio evolutionary algorithm USPEX

Fig. 12 Reconstructions on diamond (a) 2�1 (100) and (b) 2�1 (111) surface.
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Fig. 13 The phase diagram of GaN (10-11) surface as a function of chemical potentials (m(O) and m(N)-m(Ga)) and the corresponding stable reconstructions at
various conditions.
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(see Fig. 14). Our reconstruction has a much lower surface energy and is
much simpler than previous predictions.77 This reconstruction satisfied
electron counting rules and is semiconducting.79

4.6 Polymers
This capability for prediction of polymeric crystals was developed only
quite recently.41 So far, we have systematically studied ten common
polymers. And this module has been used for the design of dielectric
polymers.80 Here we illustrate the application to predict two complex
polymers, nylon-6 and cellulose.

4.6.1 Nylon-6. Two crystalline forms of nylon-6 have been experi-
mentally characterized, a and g. There is a substantial confusion re-
garding the structure of the a-phase. The earliest reported crystal
structure had some incorrect atomic coordinates in Cambridge struc-
tural database (CSD entry: LILSUU).81 Here we used the model suggested
in the previous theoretical studies,82 which is described by the packing of
the full-extended chains, possessing eight monomeric units of [–(CH2)–
CO–NH–] per unit cell, while g-phase has Z¼ 4 based on twisted chains.

Fig. 14 (a) Projection of the 2�2� 1 supercell of the (111)-IR,(z) structure along the
[111] direction. (b) Projection of the 2� 2� 1 supercell of the (111)-IR,(z) structure along the
[�1 �1 2] direction. The inequivalent surface atoms are shown by different colors.
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We have performed a search with Z¼ 8 starting from the full-extended
chain, and Z¼ 4 starting from the twisted chain, in the hope of finding a-
and g-phase. Indeed, we found that the most stable configuration has a
monoclinic symmetry for Z¼ 4 (space group P21/c, a¼ 4.77 Å, b¼ 8.35 Å,
c¼ 16.88 Å (fiber axis), g¼ 121.21, in good agreement with experimental re-
sults, except that there is a considerable deviation in cell vector b (the dir-
ection which largely depends on vdW bonding). In the g-phase, the
antiparallel twisted chains form pleated sheets via hydrogen bonds, and
the chain directions are opposite in alternating sheets.41 In our Z¼ 8
search, we found the ground state which is very similar to what has been
described in the literature.82 This structure also features nylon sheets
joined by H bonds in the antiparallel way.41

4.6.2 Cellulose. Cellulose is a polymer with repeating D-glucose
units [–C6H10O5–]n. Microfibrils of naturally occurring cellulose corres-
pond to two crystalline forms, Ia and Ib.83,84 Ia has a triclinic unit cell
and crystallizes in P1 space group. Ia has a simple unit cell and thus is
easy to be predicted. Therefore we focused on the more challenging
case of Ib. It was found that Ib is the thermodynamically more stable
phase. Starting from the D-glucopyranosyl chains (Z¼ 4), we indeed
identified Ib as the ground state configuration, and the calculated unit
cell parameters agree well with previous reports. As shown in
Fig. 15(b), cellulose chains are arranged parallel-up and edge to edge,
making flat sheets that are held together by H-bonds. Sheets formed by
H-bonded D-glucopyranosyl chains are in the bc-plane, while there are
no strong H-bonds which are perpendicular to the sheets. Most import-
antly, the complex hydrogen bond network in the flat sheets is also cor-
rectly predicted (Fig. 15(b)).

5 Outlook

We have briefly reviewed the principles of evolutionary algorithms and
their application to structure prediction. The USPEX method proved to be
a powerful tool enabling reliable and efficient prediction of stable crystal
structures. In this chapter, we introduced the recent progress in ex-
tending the structure prediction technique to a wide range of problems.
Despite its huge success in different fields, the current approach is still
limited by the followings:

(1) Energy accuracy. So far, most applications in structure prediction
are to find the most stable structures with the energy as fitness function.
The performance is largely limited by the accuracy of todays’s ab initio
simulations, which for some cases is insufficient. For instance, van der
Waals systems needs 1 kJ mole�1 accuracy to differentiate the crystal
packing, which can be only achieved by using extremely expansive
quantum-chemistry methods treatment.85,86 Despite these significant
progresses, it is still not feasible for massive structural searches.

(2) Free energy versus lattice energy. In organic crystals, the polymorph
energy differences are often quite small. Among them, the lattice energy
differences are typically very small. However, vibrational energy
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Fig. 15 The crystal structures of (a) g-nylon 6 and (b) cellulose Ib found by USPEX.
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differences are often large enough to cause a re-ranking of polymorph
stability at room temperature.87 Therefore, it is particularly needed for
organic crystal structure prediction to evaluate the free energy, instead of
lattice energy at 0 K. Enhanced and rare-event molecular dynamics
sampling techniques (metadynamics88 and adiabatic free energy dy-
namics89) provide a solution, but choices of order parameter limit their
applications for general purpose. The free-energy sampling techniques
would be complementary to crystal structure search technique in prac-
tice. Still, it is needed to develop more accurate force fields to make it
feasible to evaluate the free energy for the case of structure prediction.

(3) Structural complexity. We are suggesting USPEX as the method
of choice for crystal structure prediction of systems with up to B300
degrees of freedom (B100 atoms in the primitive cell for non-molecular
crystals, and more for molecular crystals), where no information (or just
the lattice parameters) is available. Above B100 atoms per cell runs be-
come expensive due to the ‘‘curse of dimensionality’’. However, some of
them are still tractable by using the constraints (such as molecular
geometry, lattice constants, etc.). Especially in such cases, interaction
with experiment is helpful and should be encouraged.

USPEX has been applied to many important problems. Here we high-
lighted the methodology and some applications in the field of structure
prediction. Another closely related subject is how to predict optimal
conditions of synthesis of those predicted materials, which requires
studies of chemical reactions and phase transition mechanisms. That
direction of research is still wide open and we refer the reader to some of
the first steps in it.90–92

Acknowledgements

Calculations were performed at the supercomputer of the Centre for
Functional Nanomaterials, Brookhaven National Laboratory, and the
High Performance Computing Center of NWPU. We gratefully acknow-
ledge funding from DARPA (Grants No. W31P4Q1210008 and No.
W31P4Q1310005), NSF (No. EAR-1114313 and No. DMR-1231586), the
AFOSR (No. FA9550-13-C-0037), CRDF Global (No. UKE2-7034-KV-11),
and Government of the Russian Federation (No. 14.A12.31.0003). Q-F Z
thanks the National Natural Science Foundation of China (Grants No.
51372203 and No. 51332004), the Foreign Talents Introduction and
Academic Exchange Program (Grant No. B08040). X-F.Z thanks the Na-
tional Science Foundation of China (Grant No. 11174152), the National
973 Program of China (Grant No. 2012CB921900), the Program for New
Century Excellent Talents in University (Grant No. NCET-12-0278), and
the Fundamental Research Funds for the Central Universities (Grant No.
65121009).

References

1 L. Pauling, J. Am. Chem. Soc., 1929, 51, 1010.
2 J. Maddox, Nature, 1988, 335.

244 | Chem. Modell., 2016, 12, 219–248

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

N
ev

ad
a 

- 
L

as
 V

eg
as

 o
n 

04
/0

5/
20

17
 0

4:
50

:2
3.

 
Pu

bl
is

he
d 

on
 1

8 
N

ov
em

be
r 

20
15

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

27
03

-0
02

19
View Online

http://dx.doi.org/10.1039/9781782622703-00219


3 A. Gavezzotti, Acc. Chem. Res., 1993, 27, 309.
4 J. Pannetier, J. Bassas-Alsina, J. Rodriguez-Carvajal and V. Caignaert, Nature,

1990, 346, 343.
5 J. C. Schon and M. Jansen, Angew. Chem., Int. Ed. Engl., 1996, 35, 1286.
6 A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 12562.
7 R. Martonak, A. Laio and M. Parrinello, Phys. Rev. Lett., 2003, 90, 075503.
8 S. M. Woodley, P. D. Battle, J. D. Gale and C. R. A. Catlow, Phys. Chem. Chem.

Phys., 1999, 1, 2535.
9 A. R. Oganov and C. W. Glass, J. Chem. Phys., 2006, 124, 244704.

10 C. M. Freeman, J. M. Newsam and S. M. Levine, J. Mater. Chem., 1999, 3, 531.
11 D. J. Wales and J. P. K. Doye, J. Phys. Chem. A, 1997, 101, 5111.
12 S. Goedecker, J. Chem. Phys., 2004, 120, 9911.
13 S. Curtarolo, D. Morgan, K. Persson, J. Rodgers and G. Ceder, Phys. Rev. Lett.,

2003, 91, 135503.
14 Modern Methods of Crystal Structure Prediction, ed. A. R. Oganov, WILEY-VCH,

Weinheim, 2010.
15 S. L. Chaplot and K. R. Rao, Curr. Sci., 2006, 91, 1448.
16 A. R. Oganov, A. O. Lyakhov and M. Valle, Acc. Chem. Res., 2011, 44, 227.
17 A. O. Lyakhov, A. R. Oganov, H. T. Stokes and Q. Zhu, Comput. Phys. Com-

mun., 2013, 184, 1172.
18 Q. Zhu, A. R. Oganov and X.-F. Zhou, Crystal Structue Prediction and its

applications to Earth and Materials Sciences, Topics in Current Chemisty,
Springer Verlag, 2014.

19 J. P. M. Lommerse, W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz,
A. Gavezzotti, D. W. M. Hofmann, F. J. J. Leusen, W. T. M. Mooij, S. L. Price,
B. Schweizer, M. U. Schmidt, B. P. van Eijck, P. Verwer and D. E. Williams,
Acta Crystallogr., Sect. B: Struct. Sci., 2000, 56, 697.

20 W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz, A. Dzyabchenko, P. Erk,
A. Gavezzotti, D. W. M. Hofmann, F. J. J. Leusen, J. P. M. Lommerse,
W. T. M. Mooij, S. L. Price, H. Scheraga, B. Schweizer, M. U. Schmidt,
B. P. van Eijck, P. Verwer and D. E. Williams, Acta Crystallogr., Sect. B: Struct.
Sci., 2002, 58, 647.

21 G. M. Day, W. D. S. Motherwell, H. L. Ammon, S. X. M. Boerrigter, R. G. Della
Valle, E. Venuti, A. Dzyabchenko, J. D. Dunitz, B. Schweizer, B. P. van Eijck,
P. Erk, J. C. Facelli, V. E. Bazterra, M. B. Ferraro, D. W. M. Hofmann,
F. J. J. Leusen, C. Liang, C. C. Pantelides, P. G. Karamertzanis, S. L. Price,
T. C. Lewis, H. Nowell, A. Torrisi, H. A. Scheraga, Y. A. Arnautova,
M. U. Schmidt and P. Verwer, Acta Crystallogr., Sect. B: Struct. Sci., 2005,
61, 511.

22 G. M. Day, T. G. Cooper, A. J. Cruz-Cabeza, K. E. Hejczyk, H. L. Ammon,
S. X. M. Boerrigter, J. S. Tan, R. G. Della Valle, E. Venuti, J. Jose, S. R. Gadre,
G. R. Desiraju, T. S. Thakur, B. P. van Eijck, J. C. Facelli, V. E. Bazterra,
M. B. Ferraro, D. W. M. Hofmann, M. A. Neumann, F. J. J. Leusen,
J. Kendrick, S. L. Price, A. J. Misquitta, P. G. Karamertzanis, G. W. A. Welch,
H. A. Scheraga, Y. A. Arnautova, M. U. Schmidt, J. van de Streek, A. K. Wolf
and B. Schweizer, Acta Crystallogr., Sect. B: Struct. Sci., 2009, 65, 107.

23 D. A. Bardwell, C. S. Adjiman, Y. A. Arnautova, E. Bartashevich,
S. X. M. Boerrigter, D. E. Braun, A. J. Cruz-Cabeza, G. M. Day, R. G. Della
Valle, G. R. Desiraju, B. P. van Eijck, J. C. Facelli, M. B. Ferraro, D. Grillo,
M. Habgood, D. W. M. Hofmann, F. Hofmann, K. V. J. Jose,
P. G. Karamertzanis, A. V. Kazantsev, J. Kendrick, L. N. Kuleshova,
F. J. J. Leusen, A. V. Maleev, A. J. Misquitta, S. Mohamed, R. J. Needs,
M. A. Neumann, D. Nikylov, A. M. Orendt, R. Pal, C. C. Pantelides,

Chem. Modell., 2016, 12, 219–248 | 245

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

N
ev

ad
a 

- 
L

as
 V

eg
as

 o
n 

04
/0

5/
20

17
 0

4:
50

:2
3.

 
Pu

bl
is

he
d 

on
 1

8 
N

ov
em

be
r 

20
15

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/9

78
17

82
62

27
03

-0
02

19
View Online

http://dx.doi.org/10.1039/9781782622703-00219


C. J. Pickard, L. S. Price, S. L. Price, H. A. Scheraga, J. van de Streek,
T. S. Thakur, S. Tiwari, E. Venuti and I. K. Zhitkov, Acta Crystallogr., Sect. B:
Struct. Sci., 2011, 67, 535.

24 J. Moult, K. Fidelis, A. Kryshtafovych, B. Rost, T. Hubbard and
A. Tramontano, Proteins, 2007, 69, 3.

25 A. O. Lyakhov, A. R. Oganov and M. Valle, Comput. Phys. Commun., 2010,
181, 1623.

26 Q. Zhu, A. R. Oganov, C. W. Glass and H. T. Stokes, Acta Crystallogr., Sect. B:
Struct. Sci., 2012, 68, 215.

27 D. M. Deaven and K. M. Ho, Phys. Rev. Lett., 1995, 75, 288.
28 A. R. Oganov and M. Valle, J. Chem. Phys., 2009, 130, 104504.
29 Q. Zhu, A. R. Oganov and M. A. Salvado, Phys. Rev. B: Condens. Matter Mater.

Phys., 2011, 83, 193410.
30 A. O. Lyakhov and A. R. Oganov, Phys. Rev. B: Condens. Matter Mater. Phys.,

2011, 84, 092103.
31 Y. Zhang, W. Gao and S. Chen, Comput. Mater. Sci., 2015, 98, 51.
32 Q. F. Zeng, A. R. Oganov, A. O. Lyakhov, C. Xie, X. D. Zhang, J. Zhang, Q. Zhu,

B. Wei, I. Grigorenko, L. Zhang and L. Cheng, Acta Crystallogr., Sect. C: Cryst.
Struct. Commun., 2014, 70, 76.

33 G. H. Johannesson, T. Bligaard, A. V. Ruban, H. L. Skriver, K. W. Jacobsen
and J. K. Norskov, Phys. Rev. Lett., 2002, 88, 255506.
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