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In choosing the direction

The choice of descent direction

In the previous chapter, we have talked about the general strategy for
optimization is to decide a direction and then use the line search method
to obtain a sufficient decrease. Repeating it for many time, we expect to
arrive at the local minimum.

xk+1 = xk + αkdk

The search direction often has the form

dk = −(Bk)−1∇f (xk) (1)

where Bk is a symmetric and nonsingular matrix. In some method (e.g.,
steepest descent), Bk is the identify matrix, while in (quasi-) Newton’s
method, Bk is the approximate or exact Hessian.
In this lecture, we will cover the first-order methods which purely rely on
the gradient information.
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Gradient Descent

Gradient descent

An intuitive choice for the descent direction is the direction of steepest
descent (gk = ∇f (xk)).

dk = − gk

||gk ||
If we optimize the step size at each step, we have

αk = arg min
α

f (xk + αdk)

Since

∇f (xk + αdk)Tdk = 0

We know

dk+1 = − ∇f (xk + αdk)

||∇f (xk + αk)||
It is obvious that the two consecutive directions are orthogonal.

(dk+1)Tdk = 0
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Conjugate gradient

Conjugate gradient

Gradient descent can perform poorly in narrow valleys. The conjugate
gradient method overcomes this issue by doing a small transformation.
When minimizing the quadratic functions:

minimize
α

: f (x) =
1

2
xTAx − bT x

is equivalent to solving the linear equation

Ax = b

where A is N ×N symmetric and positive definite, and thus f has a unique
local minimum.
When solving Ax = b, a powerful method is to find a sequence of N
conjugate directions satisfying

(d i )TAd j = 0 (i 6= j)
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Conjugate gradient

To find the successive conjugate directions

One can start with the direction of steepest descent

d1 = −g1

We then use line search to find the next design point. For quadratic
functions f = 1

2x
TAx − bT x , the step factor α can be computed as

∂f (x + αd)

∂α
=

∂

∂α

[
1

2
(x + αd)TA(x + αd) + bT (x + αd) + c

]
= dTA(x + αd) + dTb

= dT (Ax + b) + αdTAd

Let the gradient be zero,

α = −dT (Ax + b)

dTAd
Then the update is

x2 = x1 + αd1
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Conjugate gradient

To find the successive conjugate directions (continued)

For the next step
dk+1 = −gk+1 + βkdk

where βk is a series of scalar parameters. Larger values of β indicate that
the previous descent direction contributes strongly.
We solve β, from the followings

d (k+1)TAdk = 0

(−gk+1 + βkd (k))TAd (k) = 0

−gk+1Ad (k) + βkd (k)TAd (k) = 0

βk =
g (k+1)TAd (k)

d (k)TAd (k)

The conjugate method is exact for quadratic functions. But it can be
applied to non quadractic functions as well when the quadratic function is
a good approximation.
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Conjugate gradient

To Approximate A and β

Unfortunately, we don’t know the value of A that best approximate f
around xk . So we choose some way to compute β.

Fletcher-Reeves

βk =
g (k)Tg (k)

g (k−1)Tg (k−1)

Polak-Ribiere

βk =
g (k)T (g (k) − g (k−1))

g (k−1)Tg (k−1)
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Conjugate gradient

Comparison between Conjugate Gradient and Steepest
Descent
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Summary

Summary

Gradient descent follows the direction of steepest descent

Two consecutive search directions in gradient descent are orthogonal

In conjugate gradient, the search directions are conjugate with
respect to an approximate hessian.

Both SD and CG work with the line search method
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