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Quasi-Newton's method

Just as the secant method approximates f“ in the univariate case, quasi
Newton approximate the inverse Hessian ((H*)~!) which is needed for
each step of update

XKL )k gk (HK)1gk

These methods typically set (H¥)~1 (let’s call it @ from now on) to the
identity matrix and then apply updates to reflect information learned with
each iteration. To simplify the equations for various quasi-Newton
methods, we define the following

AL = ghtl gk

SKHL — xk+1 _ 4k



A new quadratic model

Instead of computing the exact Q, we can update it in a simple manner to
account for the curvature measured during the most recent step. Suppose,
we have generated x**1 and wish to construct a new quadratic model,

1
mk-i-l(p) _ f(Xk—i-l) +gk+1p + 5pTQk-&-lp

We let the gradient of m**t1 match the gradient of f for at least two steps
x**1 and xk.

VmFHL(—akpk) = ghtl — ok @k+1pk — gk

Since Vm**1(0) = gk*1, the second of these condition is satisfied
automatically. Rearranging it, we obtain the so called secant condition.

QFtlakpk — ghtl gk Qktlgk — K (1)



A new quadratic model

Given the displacements 8 and the change of gradients v. It requires
that the symmetric positive definite matrix Qk+1, it needs that

5k vk >0

At this stage, there still exists an infinite number of solutions of Qk+1. To
determine a unique solution, we impose another condition, which is that
Q**1 is close to the current Q¥

minl|Q — Q|
Q
st. Q=Q", B&=~F

Different matrix norms can be applied here to give different quasi-Newton
methods.



|
The Davidon-Fletcher-Powell (DFP) method

Davidon proposed a relation to ensures that @ is symmetric.
Q! = QX+ auu + b T
According to the secant condition
Q*6% + auuT 6% 4+ bw T 8K = Ak
An obvious choice for v and v is
u=~k, v=Q* — auTé =1, b =-1

where
a=1/u"6"=1/u"6* b=-1/vT6k=1/u" 6"

Qk’Yk(’Yk)TQk 6(6k)T

k+1 _ Ak
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The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

In the BFGS algorithm, it does not approximate Q*, but handles
Hk — (Qk)—l

Hk+1'7k — 5k
The minimize condition is,
min||H — H¥||
H
st. H=HT, H~y=¢"

Qk+1 — Qk _

dk(’yk)TQk—i—Qkfyk(dk)T (,.Yk)TQk,_yk 5k(6k)T
(&) T # (1 (67 Q" >(5k)T7k

BFGS does better than DFP with approximate line search.
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The Broyden Class

Comparing the two solutions from DFP and BFGS,
DFP Qk+1 _ Qk _ Qk,yk(,yk)TQk 5(5k)T

(YF)T @k~ (8%) T~k
. k+1 . k _ 5k(,yk)TQk+ok,yk(5k)T (’yk)TQk'yk 5k(6k)T
BEGS: @7 =Q )7+ U e e >(5k)T7k
ko k(~k\T Ok P 5k T
— Qk — Q(.;,Yk)(;yo)k.),? (5(/<)T),Yk + [(5k)TQk5k]vk(vk)T
where . 0k6*
k _ Y

(T (89)TQkS
In fact, there exists a family of solutions
Q* = (1 - X)Qfpas + AQ@bpp

Changing X from 0 to 1 is actually varying the u and v in

Q1 = QK+ auu™ + b’
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The Limited-memory BFGS

BFGS still uses an n x n dense matrix, which is a problem for storage of
the hessian when dealing with very large scale problems. Inspecting the
following update, can we do something smart?

Q1 = QK+ auu™ + b’

In L-BFGS, it stores the last m values for & and -y rather than the entire
inverse of H.
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Comparison of various quasi-Newton algorithms

N / — DFP
\ / —— BFGS
) i L-BFGS (i = 3)
—— L-BFGS (m = 2)
—— L-BFGS (m = 1)
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Summary

Quasi-Newton method attempted to approximate the Hessian from
function and gradient evaluations.

The first step approximation of hessian in the quasi-newton methods
is usually an identity matrix

BFGS performs better than DFP, but it still relies on the storage of
big Hessian matrix

L-BFGS is a more scalable approach for large scale problems.

All quasi-Newton methods can work with the approximate line search.
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