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Noisy Descent

Noisy Descent

Adding stochasticity to gradient descent can be beneficial in large nonlinear
optimization problems. Saddle points, where the gradient is very close to
zero, can cause descent methods to select step sizes that are too small to
be useful. One approach is to add Gaussian noise at each descent step

xk+1 ← xk − αkgk + εk

where ε(k) is zero-mean Gaussian noise with standard deviation σ. The
amount of noise is typically reduced over time. The standard deviation of
the noise is typically a decreasing sequence σ(k) such as 1/k .
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Simulated Annealing

Simulated Annealing

Simulated annealing borrows inspiration from metallurgy. Temperature is
used to control the degree of stochasticity during the randomized search.

t starts high, allowing the process to freely move , with the hope of
finding a good region with the best local minimum.

t is then slowly brought down, reducing the stochasticity and forcing
the search to converge to a minimum. Simulated annealing is often
used on functions with many local minima due to its ability to escape
local minima.

At every iteration, a candidate transition from x to x is sampled from a
transition distribution T and is accepted with probability{

1 if ∆y ≤ 0

min(exp(−∆y/t), 1) if ∆y > 0

where ∆y = f (x)− f (x ‘)
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Cross-Entropy Method

Cross-Entropy Method

This probability distribution, often called a proposal distribution, is used to
propose new samples for the next iteration. At each iteration, we sample
from the proposal distribution and then update the proposal distribution to
fit a collection of the best samples.
It requires choosing a family of distributions parameterized by θ, such as
multivariate normal distributions with a mean vector and a covariance
matrix. The algorithm also requires us to specify the number of elite
samples, melite , to use when fitting the parameters for the next iteration.

µk+1 =
1

melite

melite∑
i=1

x i

Σk+1 =
1

melite

melite∑
i=1

(x i − µk+1)(x i − µk+1)T
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Cross-Entropy Method

Cross-Entropy Method
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Covariance Matrix Adaptation

Covariance Matrix Adaptation

Covariance matrix adaptation maintains a mean vector µ, a covariance
matrix Σ, and an additional step-size scalar δ. The covariance matrix only
increases or decreases in a single direction with every iteration, whereas the
step-size scalar is adapted to control the overall spread of the distribution.
At every iteration, m designs are sampled from the multivariate Gaussian

x ∼ N (µ, σ2Σ)

The designs are then sorted according to their objective function values
such that f (x1) ≤ f (x2) ≤ · · · ≤ f (xm). A new mean vector µk+1 is
formed using a weighted average of the sampled designs:

µk+1 ←
m∑
i=1

wix i

m∑
i

wi = 1 w1 > w2 > · · · > wm > 0
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Covariance Matrix Adaptation

Covariance Matrix Adaptation

The recommended weighting is obtained by

w ‘i = ln
m + 1

2
− ln i for i ∈ {1, · · · ,m}

to obtain w = w ‘/
∑

i w ‘i .
The step size is updated using a cumulative pσ that tracks steps over time

p1
σ = 0

pk+1
σ ← (1− cσ)pσ +

√
cσ(2− cσ)µeff(Σk)−1/2σw

µeff =
1∑
i w

2
i

σw =

melite∑
i=1

wiσ
i for σi =

x i − µk

σk
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Covariance Matrix Adaptation

Covariance Matrix Adaptation

The new step size is

σk+1 ← σk exp

(
cσ
dσ

[
||pσ||

E||N (0, I )||
− 1

])
where E is the expected length of a vector drawn from Gaussian
distribution.

E||N (0, I )|| =
√

2
Γ(n+1

2 )

Γ(n2 )
≈
√
n

(
1− 1

4n
+

1

21n2

)

cσ = (µeff + 2)/(n + µeff + 5)

dσ = 1 + 2 max(0,
√
µeff − 1)/(n + 1)− 1) + cσ
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Covariance Matrix Adaptation

Covariance Matrix Adaptation

The covariance matrix is updated as follows

p1
Σ = 0

pk+1
Σ ← (1− cΣ)pk

Σ + hσ
√

cΣ(2− cΣ)µeffσw

where

hσ =

{
1 if ||pΣ||

(1−c2k+1
σ )

< (1.4 + 2
n+1 )E||N (0, I )||

0 otherwise

The update requires the adjusted weights w :

w0
i =

{
wi if wi ≥ 0

nwi

||Σ−1/2δi ||2 otherwise
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Covariance Matrix Adaptation

Covariance Matrix Adaptation

The The covariance update is then

Σk+1 ← [1+c1cσ(1−hσ)(2−cσ)−c1−cµ]Σk +c1pΣpT
Σ +cµ

µ∑
i=1

w0
i δ

i (δi )T

The constants have the following recommended values

cΣ =
4 + µeff/n

n + 4 + 2µeff/n

c1 =
2

(n + 1.3)2 + µeff

cµ = min

(
1− c1, 2

µeff − 2 + 1/µeff

(n + 2)2 + µeff

)
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Covariance Matrix Adaptation

Covariance Matrix Adaptation
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Summary

Summary

Stochastic methods employ random numbers during the optimization
process

Simulated annealin guses a temperature that controls random
exploration and which is reduced over time to converge on a local
minimum.

The cross-entropy method and evolution strategies maintain proposal
distributions from which they sample in order to inform updates.

Covariance matrix adaptation is a robust and sample-efficient
optimizer that maintains a multivariate Gaussian proposal distribution
with a full covariance matrix.
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