Numerical Optimization 12: Constrained Optimization

Qiang Zhu
University of Nevada Las Vegas

May 20, 2020

Overview

(1) Constrained Optimization
(2) Constraints
(3) Transformations to Remove Constraints

4 Lagrange Multipliers
(5) Summary

Noisy Descent

Some constraints are simply upper or lower bounds on the design variables, as we have seen in bracketed line search, in which x must lie between a and b. A bracketing constraint $x \in[a, b]$ can be replaced by two inequality constraints: $x \geq a$ and $x \leq b$

Unconstrained

Constrained, Same Solution

Constrained, New Solution

Constraints

Constraints are not typically specified directly through a known feasible set X. Instead, the feasible set is typically formed from two types of constraints:

- equality constraints, $h(x)=0$
- inequality constraints, $g(x) \leq 0$

Any optimization problem can be rewritten using these constraints

$$
\begin{array}{ll}
& \min _{\boldsymbol{x}} f(\boldsymbol{x}) \\
\text { s.t. } & h_{i}(x)=0 \\
& g_{j}(x)=0
\end{array}
$$

Transformations to Remove Constraints

In some cases, it may be possible to transform a problem so that constraints can be removed. For example, bound constraints a $\times \mathrm{b}$ can be removed by passing x through a transform

$$
x=\frac{b+a}{2}+\frac{b-a}{2}\left(\frac{2 \hat{x}}{1+\hat{x}^{2}}\right)
$$

Below is an example

$$
\min _{x} x \sin x
$$

$$
\text { s.t. } \quad 2 \leq x \leq 6
$$

Can be transformed to

$$
\min _{\hat{x}}\left[4+2\left(\frac{2 \hat{x}}{1+\hat{x}^{2}}\right) x+\sin \left[4+2 \frac{2 \hat{x}}{1+\hat{x}^{2}}\right]\right.
$$

Lagrange Multipliers

The method of Lagrange multipliers is used to optimize a function subject to equality constraints.

$$
\begin{array}{ll}
& \min _{\boldsymbol{x}} f(\boldsymbol{x}) \\
\text { s.t. } & h_{i}(x)=0
\end{array}
$$

where f and h have continuous partial derivatives.
We can formulate the Lagrangian, which is a function of the design variables,

$$
\mathcal{L}(x, \lambda)=f(x)-\lambda h(x)
$$

Solving $\nabla \mathcal{L}(x, \lambda)=0$. Specifically, $\nabla_{x} \mathcal{L}=0$ gives us the condition $\nabla f=\lambda \nabla h$, and $\nabla \lambda \mathcal{L}=0$ gives us $h(x)=0$. Any solution is considered a critical point.

Lagrange Multipliers to a single equality condition

The method of Lagrange multipliers is used to optimize a function subject to equality constraints.

$$
\begin{array}{ll}
\min _{x}-\exp \left[-\left(x_{1} x_{2}-3 / 2\right)^{2}-\left(x_{2}-3 / 2\right)^{2}\right] \\
\text { s.t. } & x_{1}-x_{2}^{2}=0
\end{array}
$$

We can formulate the Lagrangian,

$$
\mathcal{L}(x, \lambda)=-\exp \left[-\left(x_{1} x_{2}-3 / 2\right)^{2}-\left(x_{2}-3 / 2\right)^{2}\right]+\lambda\left(x_{1}-x_{2}^{2}\right)
$$

We compute

- $\frac{\partial \mathcal{L}}{\partial x_{1}}$
- $\frac{\partial \mathcal{L}}{\partial x_{2}}$
- $\frac{\partial \mathcal{L}}{\partial \lambda}$

Lagrange Multipliers to multiple equality conditions

The method of Lagrange multipliers is used to optimize a function subject to equality constraints.

$$
\begin{array}{ll}
\min _{x}-\exp \left[-\left(x_{1} x_{2}-3 / 2\right)^{2}-\left(x_{2}-3 / 2\right)^{2}\right] \\
\text { s.t. } & x_{1}-x_{2}^{2}=0
\end{array}
$$

We can formulate the Lagrangian,

$$
\mathcal{L}(x, \lambda)=-\exp \left[-\left(x_{1} x_{2}-3 / 2\right)^{2}-\left(x_{2}-3 / 2\right)^{2}\right]+\lambda\left(x_{1}-x_{2}^{2}\right)
$$

We compute

- $\frac{\partial \mathcal{L}}{\partial x_{1}}$
- $\frac{\partial \mathcal{L}}{\partial x_{2}}$
- $\frac{\partial \mathcal{L}}{\partial \lambda}$

Summary

- Constraints are requirements on the design points that a solution must satisfy.
- Some constraints can be transformed or substituted into the problem to result in an unconstrained optimization problem.
- Analytical methods using Lagrange multipliers yield the generalized Lagrangian and the necessary conditions for optimality under constraints.
- A constrained optimization problem has a dual problem formulation that is easier to solve and whose solution is a lower bound of the solution to the original problem.

