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e TS
Surrogate Models

The surrogate models are designed to be smooth and inexpensive to
evaluate so that they can be efficiently optimized from the given sampling
points. A surrogate model f parameterized by 8 is designed to mimic the
true objective function f. The parameters # can be adjusted to fit the
model based on samples collected from f.

Suppose we have

e m design points: {x!,x2,---  x™}
@ associated function evaluations: {yl,yz, ey
For a particular set of parameters, the model will predict

9=l (), fo(x™)}
In turn, this is a minimization problem

min = lly — 91|



Linear Models

A simple surrogate model is the linear model, which has the form

f=w+w'x 0 = {wo, w}

For an n-dimensional design space, the linear model has n + 1 parameters,
and thus requires at least n + 1 samples to fit unambiguously.
Instead of having both w and wy as parameters, it is common to construct
a single vector of parameters 6 = [wp, w| and prepend 1 to the vector x to
get

f=0"x
Finding an optimal 0 requires solving a linear regression problem:

min |ly = 3| or ly - X6]

where X is a design matrix, [(x1)7;---; (x™) 7]



Basis Functions

The linear model is a linear combination of the components of x:

n
f(x) =O01x1+ -+ 0,x, = ZQ,‘X,’ =0"x
i=1
which is a specific example of a more general linear combination of basis
functions.

F(x) = 01b(x1) + - - -+ 0,b(xn) Ze b(x;) = 67 b(x)

Linear models cannot capture nonlinear relations. There are a variety of
other families of basis functions that can represent more expressive
surrogate models. The remainder of this section discusses a few common
families.
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Polynomial Basis Functions

Polynomial basis functions consist of a product of design vector
components, each raised to a power. Linear basis functions are a special
case of polynomial basis functions.

In one dimension, a polynomial model of degree k has the form

k
F(x) = 0o+ O1x + 02 + - - 229,%"
i=1

In two dimensions, a polynomial model of degree k has basis functions of

the form o
bu(x):X‘:{Xé for i,_je {07 7k}7l+.jg k
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Sinusoidal Basis Functions

Any continuous function over a finite domain can be represented using an

infinite set of sinusoidal basis functions. A Fourier series can be
constructed for any integrable univariate function f on an interval [a, b]

o sin 271X\ o= cos 2mix
f(x) = > ZQ <b—a)§9i COS(b—a)

where

2 b
0o = f(x)d
o b—a/a (x)dx
: 2 (P 2ri
03" = b—a/a f(x)sin(bil);>dx
2 [P 27
05°° = b—a/a f(x)cos(bilxa>dx
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Radial Basis Functions

A radial function W is one which depends only on the distance of a point
from some center point ¢, such that it can be written

V(x,c) = V(|xc|)) = V(r).
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___Fitting Noisy Objeciive Functions |
Fitting Noisy Objective Functions

Models fit using regression will pass as close as possible to every design
point. When the objective function evaluations are noisy, complex models
are likely to excessively contort themselves to pass through every point.
However, smoother fits are often better predictors of the true underlying
objective function. A regularization term is added in addition to the

prediction error in order to give preference to solutions with lower weights.

The resulting basis regression problem with L2 regularization is:
minlly — B6JI2 + /|0]3
The optimal parameter vector is given by:
6=(B"B+ )BTy

where | is the identity matrix.
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Model Selection

So far, we have discussed how to fit a particular model to data. We
generally want to minimize generalization error, which is a measure of the
error of the model on the full design space, including points that may not

be included in the data used to train the model. One way to measure
generalization error is to use the expected squared error of its predictions:

N f(x))z]

which impossible to compute. It may be tempting to estimate the
generalization error of a model from the training error by using the mean
squared error (MSE) of the model evaluated on the m samples:

= 3 [(1) - i) |
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~ModeSelection |
Holdout

A simple approach to estimating the generalization error is the holdout
method, which partitions the available data into a test set Dy, with h
samples and a training set Dt consisting of all remaining m — h samples.
The training set is used to fit model parameters. The held out test set is
not used during model fitting, and can thus be used to estimate the
generalization error. Different split ratios are used, typically ranging from
50% train, 50% test to 90% train, 10% test, depending on the size and
nature of the dataset. Using too few samples for training can result in poor
fits, whereas using too many will result in poor generalization estimates.

train(e) —— test(f, o) ———> generalization error estimate
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Cross validation

Here, the original dataset D is randomly partitioned into k sets

Dy, Dy, -+, Dy of equal, or approximately equal, size. We then train k
models, one on each subset of k — 1 sets, and we use the withheld set to
estimate the generalization error. The cross-validation estimate of
generalization error is the mean generalization error over all folds

D, D, Ds Dy Ds

( ) — test( f ,#) — generalization error estimate
( ) — test( f o) — generalization error estimate
train(seee) —> test(f, ») —> generalization error estimate
( ) — test(f, ) — generalization error estimate
(e0es) °)

— test( f', —— generalization error estimate

|

generalization error y and

12/13



Summary

@ Surrogate models are function approximations that can be optimized
instead of the true, potentially expensive objective function.

@ Many surrogate models can be represented using a linear combination
of basis functions.

@ Model selection involves a bias-variance trade off between models
with low complexity that cannot capture important trends and models
with high complexity that overfit to noise.

@ Generalization error can be estimated using techniques such as hold
out,k-fold cross validation, and the bootstrap.
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