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Gaussian Distribution

Gaussian Distribution

In surrogate modeling, a strategy is to use a probabilistic model to
estimate the confidence of the model, one of which is Gaussian process.
An n-dimensional Gaussian distribution is parameterized by its mean µ and
its covariance matrix Σ. The probability density at x is

N (x |µ,Σ) = (2π)−n/2|Σ|−1/2 exp

(
− 1

2
(x − µ)T Σ−1(x − µ)

)
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Gaussian Distribution

Gaussian Distribution: Nice Properties

A value sampled from a Gaussian is written

x ∼ N (µ,Σ)

Two jointly Gaussian random variables a and b can be written[
a
b

]
∼ N

([
µa

µb

]
,

[
A, C

CT , B

])
where the marginal distribution for a vector of random variables is given by
its corresponding mean and covariance

a ∼ N (µa,A) b ∼ N (µb,B)

The conditional distribution for a multivariate Gaussian also has a
convenient closed-form solution:

a|b ∼ N (µa|b,Σa|b)

µ|a|b = µa + CB−1(b − µa)

Σa|b = ACB1C
4 / 12



Gaussian Processes

Gaussian Processes

A special type of surrogate model known as a Gaussian process allows us
not only to predict f but also to quantify our uncertainty in that prediction
using a probability distribution.y1...

ym

 ∼ N(
m(x1)

...
m(xm)

 ,
k(x1, x1) · · · k(x1, xm)

...
. . .

...
k(xm, x1) · · · k(xm, xm)

)
where

m(x) is the mean function to represent the prior knowledge about the
function

k(x , x ‘) is the covariance function to control the smoothness.
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Gaussian Processes

Kernel Function

Kernel function is to control the smoothness of the sample. A common
choice of k is the squared exponential function

k(x , x ‘) = exp

(
− (x − x ‘)2

2l2

)
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Prediction

Prediction

Suppose we already have a set of points X and the corresponding y , we
wish to predict the values ŷ at points X ∗. from the joint distribution[

ŷ
y

]
∼ N

([
m(X ∗)
m(X )

]
,

[
K (X ∗,X ∗) K (X ∗,X )
K (X ,X ∗) K (X ,X )

])
In the equation above, we use the functions m and K , which are defined as
follows:

m(X ) = [m(x1), · · · ,m(xn)]

K (X ,X ‘) =

k(X ∗,X ∗) · · · k(X ∗,X )
...

. . .
...

k(X ,X ∗) · · · k(X ,X )


The conditional distribution is given by: ŷ |y ∼ N (µ∗,Σ∗)

µ∗ = m(X ) + K (X ,X )K (X ,X )−1(y −m(X ))

Σ∗ = K (X ∗ − X ∗)− K (X ,X )K (X ,X )−1K (X ,X ∗))
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Gradient Measurements

Gradient Measurements

Gradient observations can be incorporated into Gaussian processes in a
manner consistent with the existing Gaussian process machinery.[

y
∇y

]
∼ N

([
m(f )
m(∇)

]
,

[
Kff K f∇
K∇f K∇∇

])
Where

y ∼ N(mf ,Kff ) is a traditional Gaussian process,

m∇ is a mean function for the gradient,

K f∇ is the covariance matrix between function values and gradients,

K∇f is the covariance matrix between function gradients and values,

K∇∇ is the covariance matrix between function gradients.
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Gradient Measurements

Prediction

Prediction can be accomplished in the same manner as with a traditional
Gaussian process. We first construct the joint distribution ŷ

y
∇y

 ∼ N(
m(f (X ∗))

m(f (X ))
m(∇X )

 ,
Kff (X ∗,X ∗) Kff (X ∗,X ) K f∇(X ∗,X )

Kff (X ,X ∗) Kff (X ,X ) K f∇(X ,X )
K∇f (X ,X ∗) K∇f (X ,X ) K∇∇(X ,X )

)

The conditional distribution follows the same Gaussian relations

µ
∗ = mf (X ) +

[
Kff (X , X )

K∇f (X , X )

]T [
Kff (X , X ) Kf∇(X , X )

K∇f (X , X ) K∇∇(X , X )

]−1 [
y − m(X )
∇y − m∇(X )

]
Σ∗ = Kf f (X∗ − X∗)−

[
Kff (X , X )

K∇f (X , X )

]T [
Kff (X , X ) Kf∇(X , X )

K∇f (X , X ) K∇∇(X , X )

]−1 [
Kff (X , X )

K∇f (X , X )

]
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Noisy Measurements

Noisy Measurements

So far we have assumed that the objective function f is deterministic. In
practice, however, evaluations of f may include measurement noise,
experimental error. We can model noisy evaluations as y = f (x) + z ,
where z is zero-mean Gaussian noise, z ∼ N (0, v). The new joint
distribution is:[

ŷ
y

]
∼ N

([
m(X ∗)
m(X )

]
,

[
K (X ∗,X ∗) K (X ∗,X )
K (X ,X ∗) K (X ,X ) + v I

])
The conditional distribution is given by: ŷ |y ∼ N (µ∗,Σ∗)

µ∗ = m(X ) + K (X ,X )(K (X ,X ) + v I)−1(y −m(X ))

Σ∗ = K (X ∗ − X ∗)− K (X ,X )(K (X ,X ) + v I)−1K (X ,X ∗))
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Fitting Gaussian Processes

Fitting Gaussian Processes

Given a dataset with n entries, the log likelihood is given by

log p(y |X , v ,σ) =− n

2
log 2π − 1

2
log |K θ(X ,X ) + v I |

− 1

2
(y −mθ)T (K θ(X ,X ) + v I )−1y −mθ(X )

The gradient is then given by

∂

∂θ
log p(y |X , v ,σ) =

1

2
yT K−1

∂K
θj

K−1y − 1

2
Tr

(
Σ−1θ

∂K
θj

)
where Σ−1θ = K θ(X ,X ) + v I
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Summary

Summary

Gaussian processes are probability distributions over functions.

The multivariate normal distribution has analytic conditional and
marginal distributions.

We can compute the mean and standard deviation of our prediction
of an objective function at a particular design point given a set of
past evaluations.

We can incorporate gradient observations to improve our predictions
of the objective value and its gradient.

We can incorporate measurement noise into a Gaussian process.

We can fit the parameters of a Gaussian process using maximum
likelihood.
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