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Gaussian Distribution

In surrogate modeling, a strategy is to use a probabilistic model to
estimate the confidence of the model, one of which is Gaussian process.
An n-dimensional Gaussian distribution is parameterized by its mean u and
its covariance matrix ¥. The probability density at x is

N(xlp E) = (27) 2|5 exp ( e (- m)
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Gaussian Distribution: Nice Properties

A value sampled from a Gaussian is written
X ~ N(“v T)

Two jointly Gaussian random variables a and b can be written

i -] & 8l)

where the marginal distribution for a vector of random variables is given by
its corresponding mean and covariance

aNN(u’a’A) bNN(y’baB)

The conditional distribution for a multivariate Gaussian also has a
convenient closed-form solution:

a’b ~ N(y’a\bv za|b)
,U"a\b = py+ CB_l(b - /J’a)
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Gaussian Processes

A special type of surrogate model known as a Gaussian process allows us

not only to predict f but also to quantify our uncertainty in that prediction
using a probability distribution.

yi m(xy) k(x1,x1) -+ k(x1,Xxm)
f~N ( S I : : )
Ym m(Xm) k(Xm7X1) k(XmaXm)
where

e m(x) is the mean function to represent the prior knowledge about the
function

@ k(x,x") is the covariance function to control the smoothness.
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Kernel Function

Kernel function is to control the smoothness of the sample. A common
choice of k is the squared exponential function

K(x,x') = exp < _ (><;;<)2>
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Prediction

Suppose we already have a set of points X and the corresponding y, we
wish to predict the values y at points X*. from the joint distribution

) - [ ) )

In the equation above, we use the functions m and K, which are defined as
follows:

K(X*,X*) - k(X X)
KOXGCX) = |
KX, X*) - k(X,X)
The conditional distribution is given by: y|y ~ N (up*, X*)
p* = m(X) + K(X, X)K(X,X) "y — m(X))
T = K(X — X*) — K(X, X)K(X, X) 1K (X, X*))
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Gradient Measurements

Gradient observations can be incorporated into Gaussian processes in a
manner consistent with the existing Gaussian process machinery.

AR )
Where

e y ~ N(my, Kg) is a traditional Gaussian process,

mYV is a mean function for the gradient,

°

@ Ky is the covariance matrix between function values and gradients,
@ Kyr is the covariance matrix between function gradients and values,
°

Kvv is the covariance matrix between function gradients.



Prediction

Prediction can be accomplished in the same manner as with a traditional
Gaussian process. We first construct the joint distribution

y m(f(X*))| [Ke(X*,X") Kg(X*,X) Krv(X*,X)

v [~ ([ miro) || Kelxx) Ka(x,X) KX | )
Vy m(VX) va(X,X*) va(X,X) va(X,X)

The conditional distribution follows the same Gaussian relations

« K (X, X) 1T [ Kee(X, X Kro (X, X)] ! — m(X
pr =m0+ [@CN) KSR KRR v Do)
T

e e [KeOG) T [ReGX) Keg (06 X) ] [ Kir(X, X)
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Noisy Measurements

So far we have assumed that the objective function f is deterministic. In
practice, however, evaluations of f may include measurement noise,
experimental error. We can model noisy evaluations as y = f(x) + z,
where z is zero-mean Gaussian noise, z ~ N(0, v). The new joint
distribution is:

o] (R ey

The conditional distribution is given by: y|y ~ N (p*, T¥)

pt = m(X) + K(X, X)(K(X, X) + vI) "}y — m(X))
T = K(X* — X*) — K(X, X)(K(X, X) + vI)EK(X, X))
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Fitting Gaussian Processes

Given a dataset with n entries, the log likelihood is given by

1
log p(y|X,v,0) = — g log 2 — = log |Kp(X, X) + vl

=Ly m) TR, X) + 1)y - mi(x)

The gradient is then given by

%) 1 oK 1 oK
— | X = yTK 1 —Kly - —Tr(x,1-—
5g 08 PLYIX, v, 0) = Sy Y3 r( 0,

where X, = Kp(X, X) + vl
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Summary

@ Gaussian processes are probability distributions over functions.

@ The multivariate normal distribution has analytic conditional and
marginal distributions.

@ We can compute the mean and standard deviation of our prediction
of an objective function at a particular design point given a set of
past evaluations.

@ We can incorporate gradient observations to improve our predictions
of the objective value and its gradient.

@ We can incorporate measurement noise into a Gaussian process.

@ We can fit the parameters of a Gaussian process using maximum
likelihood.
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