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Generalized evolutionary metadynamics for sampling the energy landscapes and its applications
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We present an automated scheme to systematically sample energy landscapes of crystalline solids, based on
the ideas of metadynamics and evolutionary algorithms. Phase transitions are driven by the evolution of the order
parameter (in this case, 6-dimensional order parameters composed of cell vectors components) and aided by
atomic displacements corresponding to both zero and nonzero wave vectors, enabling cell size to spontaneously
change during simulation. Our technique can be used for efficient prediction of stable crystal structures, and is
particularly powerful for mining numerous low-energy configurations and phase transition pathways. By applying
this method to boron, we find numerous energetically competitive configurations, based on various packings of
B12 icosahedra. We also observed a low-energy metastable structure of Si(T32) which is likely to be a product
of decompression on Si-II. T32 is calculated to have a quasidirect band gap of 1.28 eV, making it promising for
photovoltaic applications.
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I. INTRODUCTION

In the last decade, major advances in the field of crystal
structure prediction (CSP) took place, both for organic and
inorganic crystals [1,2]. Most of the advances in this field are
devoted to search for the global energy minimum (most stable
structure); however, attempts to explore all the low-energy
metastable minima are rather limited so far. Metastable phases,
although not thermodynamic equilibrium states, are very
common and of great importance in materials science. For
instance, carbon can exist in many distinct forms, ranging
from superhard insulating diamond to ultrasoft semimetallic
graphite, and many other allotropes (e.g., fullerenes, carbon
nanotubes, M-carbon [3]), of which graphite is the only
thermodynamic ground state at ordinary temperature and
pressure conditions [4]. Graphite itself exists in two polytypic
forms, rhombohedral and hexagonal, which only differ in the
stacking sequence of the graphene layers. Rich polymorphism
and polytypism are indeed common among both complex
compounds and simple elements. For example, lithium at low
temperatures is found to undergo a martensitic transformation
from bcc to a complex close-packed rhombohedral structure
(Li-9R) [5]. Metastable structures can be easily missed in
an ordinary CSP calculation, if the search is only targeted
to identify the ground state. If metastable states are of
interest, attention should be paid to reconstructing the whole
low-energy part of the landscape, instead of locating just the
global minimum.

II. GENERALIZED EVOLUTIONARY METADYNAMICS

Laio and Parrinello originally proposed the metadynamics
method to explore the free energy surface (FES) [6]. They
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expressed the Gibbs energy as a function of a few collective
variables (CVs) σ , by means of coarse-grained dynamics:

G = Gσ +
∑

We
− |σ−σ (t ′)|2

2δσ2 . (1)

Here, the second term is a Gaussian potential, which in-
troduces a time-dependent bias to discourage the already
sampled configuration from being visited again. With proper
parametrization of the Gaussian height (W ) and width (δσ ),
metadynamics efficiently reaches and crosses the transition
state, thus solving an intrinsic problem of molecular dynamics
(MD) simulations. This technique has been successfully
applied to many problems [7]. It was found that cell shape
is a good choice of CVs set for the study of solid-solid phase
transitions [8]. Therefore, the total dimensionality, 3N + 3 for
a system with N atoms, is split into 6 dimensions handled by
metadynamics, and the remaining 3N − 3 variables explored
by MD. Although it has found great success in CSP, the
original version of metadynamics has challenges, in cases
where MD cannot equilibrate the system at given cell shape,
and where the transformation is not well described by the
cell shape change (i.e., where 3N + 3 → 6 reduction of
dimensionality is not adequate). In principle, one can also
use high-temperature MD to allow the large displacements on
the atomic positions. However, the calculation will usually end
up with very disordered systems.

Indeed, the 3N − 3 variables describing atomic positions
can be transformed into a set of mutually orthonormal modes
that possess valuable properties and are often used to describe
transitions between crystal structures. If a structure is not
dynamically stable (i.e., has phonons with imaginary frequen-
cies), a more stable structure is obtained by following the
eigenvector of the soft vibrational mode. For structures without
soft modes, there is a statistically valid Bell-Evans-Polanyi
principle that states that low-energy structures are usually
connected by low activation barriers [9]. Low barriers are, in
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turn, usually related to the direction of the lowest curvature of
the FES—or eigenvector of the softest vibrational mode [10].

Following this philosophy, we recently developed a hy-
brid technique, evolutionary metadynamics [11], where large
displacements (dmax) along softest-mode eigenvectors are
used to equilibrate the system (i.e., find the lowest-energy
configuration) at each cell shape. The idea of using large
phonon displacements was borrowed from the soft-mutation
operator [12] of our evolutionary structure prediction method
USPEX [13]. Furthermore, unlike the original version of
metadynamics, essential elements of an evolutionary algo-
rithm were incorporated—evolutionary metadynamics deals
with a population of structures (rather than a single evolving
structure) and involves a selection step, where at each cell
shape the lowest-energy configuration is selected and used for
making the next population of structures (each corresponding
to a particular phonon displacement pattern). In Ref. [11],
just like in the original metadynamics technique [7,8], only
transitions between structures having the same number of
atoms in the cell were allowed. The use of the dynamical
matrix gives a natural recipe to overcome this limitation. To
find softest modes and their eigendisplacements, we compute
the dynamical matrix D at each wave vector q:

D
ij

αβ(q) = 1

(mimj )1/2

∑
l

�
ij

αβ(0,l)exp{iq[rj (l) − ri(0)]}, (2)

where mi and mj are masses of the ith and j th atoms, the sum
runs over all lth unit cells, and �

ij

αβ(0,l) are force constants
between the atom i in the reference cell (l = 0) and atom j in
the lth cell, whose positions are described by vectors ri(l) and
rj (0):

�
ij

αβ(l,l′) = ∂2E

∂uα
i(l)∂uβ

j (l′)
, (3)

where uα
i(l) denotes a displacement of an ith atom in the lth

unit cell along the αth coordinate axis.
Solving the secular equation with the dynamical matrix

given by Eq. (2) yields both eigenvectors and frequencies of
all phonon modes corresponding to the wave vector q. In our
original work [11] only the case q = 0 was studied; i.e., the
system size (number of atoms in the simulation cell) was
kept constant throughout the simulation, just like in normal
metadynamics. By considering those nonzero q vectors, it
allows a simple way to consider structural modulations and
complex phase transition mechanisms that involve system size
variations. The extension results in the generalized evolu-
tionary metadynamics (GEM) technique, which we present
below. However, several computational problems need to be
addressed.

First, the computation of the dynamical matrix (2) is very
expensive at the ab initio level. We have simplified it [11,12,14]
by taking bond hardness coefficients [15] as force constants
(3). Bond hardness coefficients are computed from interatomic
distances in a relaxed structure, and from the tabulated covalent
radii and electronegativities of the atoms [12,15]. Then, in
our dynamical matrix calculation, we have set atomic masses
to unity, as here we are only interested in potential energy
curvatures (which do not depend on masses) rather than
frequencies (which depend on them).

Second, considering many q vectors proportionally in-
creases the number of phonon modes, and each mode
corresponds to two structures (because displacements in
both positive and negative directions might produce different
structures). Thus, if there are N atoms in the unit cell and m

wave vectors are being sampled, there will be 6mN structures
(e.g., for a moderate-size calculation with N = 30 and m = 8,
at each metastep one will have to sample 1440 structures). We
found a recipe to considerably, by 1–2 orders of magnitude,
reduce the number of needed phonon displacements without
sacrificing the predictive power of the method. This is done
through several ways. (1) Only inequivalent q vectors are
considered. Even for lowest-symmetry crystals this introduces
a twofold saving of computational effort due to time-reversal
symmetry. (2) Aufbau principle: each new added mode is
chosen from a new q vector, in order of increasing magnitude of
the real-space modulation vector. This allows an economical
sampling of all relevant wave vectors. (3) At each q vector
we consider only the lowest-frequency modes, typically not
more than 1/3 of the total number. Among these, we exclude
acoustic modes, and remove all (nearly) degenerate modes
and displacement directions. With this scheme, for a system
with N = 30 and m = 8, it is sufficient to use 50–100
phonon displacements, and we checked that further increasing
this number does not bring any practical improvements.
These selected displacements typically result in distinct new
structures, most of which have very low energies, indicating a
remarkable efficiency of finding low-energy structures.

Comparing with original metadynamics [8], here we obtain
at least one order of magnitude more low-energy structures
at a similar computational cost, with the possibility of
sampling cells of different sizes. At each metastep, we compare
normalized energies (e.g., energies per atom) and choose the
lowest-energy structure as the parent of the new generation.
For this structure we compute the stress tensor at its current
cell shape H (t), and apply transformation to drive the evolution
of the cell shape. Since now different structures correspond to
different supercells of the original basic cell h(t), we keep track
of the supercell indices S(t) = [i,j,k] and apply deformation
to the basic cell as follows:

h(t) = H (t) ·
[

1

i

1

j

1

k

]′
, (4a)

h(t + 1) = h(t) + δh|f |V 1/3S ⊗ f · h(t), (4b)

H (t + 1) = h(t + 1) · [ijk]′, (4c)

where S is the elastic compliance tensor corresponding to an
elastically isotropic medium with a typical Poisson ratio 0.26,
which is the border between brittle and ductile materials [16].
δh is a stepping parameter, while the driving force f has two
components according to Eq. (1): (I) freal = V [h−1(P − p)]
is defined as the derivative of the energy with respect to h, and
(II) fGaussian comes from the added Gaussian.

Finally, the scheme described above can only lead to in-
creasingly larger supercells, which is not only computationally
expensive, but also prevents many transformation paths after
a supercell structure took over. To avoid this problem, every
several metasteps we add an extra population generated from
the original structure (after relaxation) put in the current basic
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cell. In addition, for every structure we check translational
symmetry and transform to a smaller cell whenever possible.
This enables structural transformations with both increasing
and decreasing supercell sizes.

III. APPLICATIONS

When applied to CSP, metadynamics requires a reasonable
initial configuration and then samples the phase transitions on
the FES as a function of cell shape [8], while GEM does not
rely only on the choice of collective variables (cell shape),
but also samples the atomic displacements over different q
vectors. Thus it allows one to perform structure prediction
by using rather simple structural types as an initial guess.
For instance, we successfully identified α-Ga, graphite, and
diamond structures as the ground states for group III-IVA
elements, by starting from a bcc structure. This differentiates
our method from the original metadynamics [8]. And this
success encourages us to apply GEM to more complex
systems.

In our studies, the structure relaxations are done based on
density functional theory (DFT) within the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation (GGA)
[17] as implemented in the VASP code [18]. We used the
all-electron projector-augmented wave (PAW) method and
the plane wave basis set with the 600 eV kinetic energy
cutoff; the Brillouin zone was sampled by uniform �-centered
meshes with the reciprocal space resolution 2π × 0.06 Å−1.
To ensure that the obtained structures are dynamically stable,
we calculated phonon frequencies throughout the Brillouin
zone using the finite-displacement approach [19].

A. Close-packing motifs of boron

Here we first report the results on boron, an element famous
for its structural complexity. The most striking feature in all
the discovered boron allotropes is that boron atoms form
icosahedral clusters [20,21]. Such clusters are also found
in boron-rich solids [21]. The simplest structure containing
icosahedron is α-boron, which is based on a distorted cubic
packing of icosahedra. The resulting crystal structure has
rhomohedral symmetry (space group R3̄m). All B12 units in
the structure follow the “ABC” stacking sequence along the
[0001] direction. It is well known that ABC stacking (or fcc)
has four equivalent close-packed planes. One may wonder
about the possibility of other close-packed arrangement of the
B12 icosahedra.

Using the GEM technique, we performed a simulation
starting from a 12-atom primitive cell of α-boron phase.
Figure 1(a) shows the evolution of the enthalpy. α-B persists
until the 25th generation. Then upon sufficient cell deformation
and aided by low-energy modes, it undergoes a transition to
a Cmca phase. The structure has been proposed by Pickard
[22] and discussed by He [23], who, however, both failed
to notice that this is a closed-packed polytype of α-B. As
we mentioned, an important feature of (G)EM is that the
sampling space at each metastep is much more global than
traditional MD, and typically yields many structures. By a
close examination of the results, we found a series of low-
energy configurations (see Table I). Clearly, all the low-energy

TABLE I. Crystallographic data of various boron allotropes at
zero pressure.

2O, Cmca, a = 4.884 Å, b = 8.851 Å, c = 8.065 Å
Atomic coordinates

B 8f 0.0000 0.2361 0.5683
B 8f 0.0000 0.4373 0.5756
B 8g 0.6817 0.0051 0.2500
B 8g 0.3229 0.3327 0.2500
B 16h 0.7032 0.3313 0.6391

4O, Cmca, a = 4.892 Å, b = 8.841 Å, c = 16.098 Å
Atomic coordinates

B 8f 0.0000 0.3909 0.9143
B 8f 0.0000 0.0625 0.6591
B 8f 0.0000 0.5928 0.5927
B 8f 0.5000 0.7646 0.6621
B 8g 0.8235 0.9939 0.7500
B 8g 0.6812 0.8218 0.7500
B 16h 0.8214 0.6642 0.5030
B 16h 0.2040 0.0024 0.4446
B 16h 0.7961 0.6580 0.8054
9M , C2/m, a = 8.846 Å, b = 4.891 Å, c = 12.459 Å, β = 104.2◦

Atomic coordinates
B 4i 0.2796 0.0000 0.0451
B 4i 0.0697 0.0000 0.3859
B 4i 0.1608 0.0000 0.2842
B 4i 0.3637 0.0000 0.2876
B 4i 0.8646 0.0000 0.3764
B 4i 0.4198 0.5000 0.9495
B 8j 0.9371 0.1814 0.8329
B 8j 0.2992 0.2035 0.9074
B 8j 0.3906 0.1768 0.1665
B 8j 0.7521 0.2037 0.2404
B 8j 0.8344 0.1786 0.4959
B 8j 0.9769 0.2961 0.4262

P 3221, a = 5.041 Å, c = 12.031 Å
Atomic coordinates

B 6c 0.3259 0.1062 0.1095
B 6c 0.9858 0.4827 0.4102
B 6c 0.6678 0.4401 0.3256
B 6c 0.8059 0.6909 0.2071
B 6c 0.2063 0.8752 0.9922
B 6c 0.9291 0.9232 0.0712

P 21/c, a = 4.354 Å, b = 4.965 Å, c = 8.734 Å, β = 119.1◦

Atomic coordinates
B 4e 0.3247 0.6714 0.6139
B 4e 0.1836 0.8377 0.3949
B 4e 0.3755 0.1649 0.4619
B 4e 0.5541 0.3368 0.6835
B 4e 0.2485 0.3327 0.2573
B 4e 0.1058 0.3329 0.5408

structures in Fig. 1 are based on the packing of B12 icosahedra.
More interestingly, we find the most energetically competitive
structures have various close packings (ABC, AB, ABAC,
ABABCBCAC), as shown in Figs. 1(c)–1(f). Those include
two different structures with space group Cmca with AB and
ABAC stackings, another C2/m structure with ABABCBCAC
stacking. However, polytypism involves shifting of (111̄1̄)
layers in α-boron, rather than (0001). Therefore, we name
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FIG. 1. (Color online) (a) GEM simulations starting from the primitive cell of α-B (the supercell size of each structure is indicated by
different marker symbols); (b) illustration of two close-packed planes (0001) and (111̄1̄) in α-B based on hexagonal lattice setting; low-energy
configurations are identified as a pseudo-close-packing behavior in different stacking sequences of (c) ABC (α-B), (d) AB (space group Cmca),
(e) ABAC (space group Cmca), (f) ABABCBCAC (space group C2/m).

the new structures as 2O for AB stacking, 4O for ABAC
stacking, and 9M for ABABCBCAC stacking. For the same
reason, α-boron can be denoted as 3R. Obviously, there can be
an infinite series of energetically close polytypes constructed
in this way.

In addition to those structures of boron shown in Fig. 1, we
found that many low-energy structures are not closed-packed,
but still based on the packing of B12 icosahedra, and one
representative (P 3221) is shown in Fig. 2(a). This structure has

FIG. 2. (Color online) Additional representative low-energy
structures (a) P 3221 structure, (b) P 21/c structure.

higher energy (94.2 meV/atom relative to α-B) than the close-
packed counterparts. The other one, the P 21/c structure (Fig. 2)
represents another group of structures which do not contain B12

units, and it has much higher energy (136.3 meV/atom) than
that of α-B. We note that the structure shares similarity with
the planar α-sheet structure that has been widely investigated
by theoretical calculations [24].

All the presented structures are dynamically stable [25],
indicating that these allotropes can exist long at ambient
conditions. Transitions between close-packing structures have
been observed and extensively studied for metals and are
known to have low activation barriers—however, covalent
bonding in boron will make the barriers very high. Twinning
and stacking faults commonly observed in chemical vapor
deposited films are due to the random occurrence of hexagonal
stacking in a cubic stacking sequence [26]. It remains to be seen
whether the newly predicted boron stackings can be produced
in this way. One can also expect the formation of these new
stackings at twin boundaries in α-boron.

B. Decompression on Si-II

Silicon is another element which has been intensely
investigated. It is well known that silicon exhibits very rich
polymorphism under pressure. Upon increase of pressure,
silicon undergoes a series of phase transitions: I (cubic
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FIG. 3. (Color online) The first stage of phase transition observed
in GEM simulation. The arrows on the cells represent the direction of
stress on each a, b, c vector. d is the interlayer distance perpendicular
to the (201) planes.

diamond) → II (β-Sn) → XI (Imma) → V (simple hexagonal)
→ VI (Cmca) → VII (hcp) → X (fcc). A recent metadynamics
simulation by employing a high dimensional neural network
potential has successfully reproduced this sequence [27].
However, the above transitions are not fully reversible upon
decompression [28,29]. The Si-II phase transforms to an
exotic semimetallic phase R8 (Si-XII) at 9.3 GPa, and further
to another metastable cubic form BC8 (Si-III) that persists
until ambient conditions. The transition mechanism upon
decompression has not been fully understood. It has been also
found that both BC8 and R8 can coexist in the indentations
produced by a nanoindenters on a single-crystalline silicon
wafer as a result of the residual compressive stresses [30]. Such
irreversibility indicates a chance to synthesize new metastable
forms by high-pressure modification. The quest for new forms
of silicon surges because of photovoltaic application [31–33].
In order to achieve a better absorption in the visible light, the
ideal material should have a direct band gap of 1–1.5 eV, and
strong absorption within the solar spectrum.

Several GEM simulations at different pressure conditions
were performed by starting from the Si-II structure which
has been fully relaxed at 10 GPa. By varying the Gaussian
parameters and dmax, we observed different products such
as cubic diamond, hexagonal diamond, and many other
metastable structures based on the modification of diamond
which have been made by other groups [33,34].

However, we are interested in those forms which have
been observed in experiments. Therefore, we intentionally
decreased dmax and started from a 2×2×1 supercell, in which
we were able to obtain the transition path from Si-II to Si-III
(BC8). We reran this calculation by using a larger population
size (120 for a 64-atom system). The phase transitions can be
understood via two stages as follows.

At the beginning, Si-II undergoes lattice expansion nearly
uniformly, as the initial configuration is relaxed at 10 GPa.
After a few generations, the expansions in the a,b directions
were compensated by Gaussian force, while the lattice still
increases along the c direction. As shown in Fig. 3, the (021)
stacking layers are deformed and undergo a reconstruction due

FIG. 4. (Color online) The second stage of phase transition ob-
served in GEM simulation. The arrows on the cells represent the
stresses on each a, b direction. (a) and (b) represent two intermediate
structures shown in the simulation; (c) 2 × 2 × 1 supercell of R8
structure; (d) 2 × 2 × 1 supercell of BC8 structure; (e) 2 × 2 × 1
supercell of T32 structure [space group P 421c, a = 9.416 Å,
c = 6.639 Å, Si1(0.479, 0.375, 0.231), Si2(0.124, 0.523, 0.221),
Si3(0.229, 0.620, 0.521), Si4(0.372, 0.728, 0.976)]. The tetragonal
spiral chains are highlighted in cyan.

to this uneven strain distribution, which leads to the occurrence
of spiral chains at step 4.

We found that further deformation at the next step can
easily lead to reconstructions in many ways, by using dif-
ferent vibrational modes. As shown in Fig. 4, we observed
that the softmutated structures can be characterized by the
arrangements of the tetragonal spiral chains. After full re-
laxation of (c) and (d), we successfully obtained R8 and
another phase in tetragonal form. Although the best survival
in this generation is not dynamically stable, we found the BC8
structure as the best survival in the later generation [from (b) to
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FIG. 5. (Color online) The HSE06 band structure of Si-T32
structure.
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FIG. 6. (Color online) The calculated imaginary part of dielectric
functions and optical absorption coefficient for Si-T32. The results
for Si diamond phase are also shown for comparison.

(e) in Fig. 4]. Interestingly, all structures (T32, R8, and BC8)
can be characterized by different arrangements of tetragonal
spiral chains.

All three structures have very close energetics, which
are 160 meV/atom (BC8), 161 meV/atom (R8), and
164 meV/atom (T32) higher than Si-I at ambient pressure.
Although closely associated in both topology and energetics,
they exhibit different electronic properties. Both BC8 and
R8 are semimetallic [35], while T32 is calculated to be
a semiconductor within the PBE functional. Standard DFT
is well known to underestimate the band gaps, while the
HSE06 functional is considered to be very accurate for silicon
[32,33,36]. As shown in Fig. 5, the valence band maximum
(VBM) is located at (0, 0, 1/6), but is only 0.03 eV higher
than the � point. The conduction band minimum (CBM)
is right at the � point, thus making T32 a semiconductor
with a quasidirect band gap of 1.28 eV at the � point. The
imaginary part of the dielectric function for T32 within the
HSE06 functional is also shown in Fig. 6. Compared with
Si-I, the optical absorption in T32 starts from a much lower
energy (∼1.28 eV), which makes T32 very attractive for solar
cell applications.

Different from the previously proposed Si alltropes
[32–34], T32 shares many similarities with BC8 and R8. Thus
it is very likely to be synthesized from Si-II as well, by using the
same experimental protocols such as diamond anvil cell [28],
nanoindentation [30], and perhaps elastic strain engineering
[37]. We provide the comparison of simulated x-ray diffraction
pattern for the BC8, R8, and T32 structures as shown in
Fig. 7. Although all three structures share the same peaks with
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FIG. 7. (Color online) Comparison of simulated x-ray diffraction
patterns for (a) BC8, (b) R8, and (c) T32 under ambient conditions,
respectively. The patterns were simulated using mercury with an x-ray
wavelength of 1.54056 Å.

strongest intensity, the diffraction patterns are clearly different
from each other, especially at the low-angle region, which can
be used to distinguish them in future experiments.

IV. CONCLUSIONS

In summary, we have developed and used a specially
designed GEM technique to explore energy landscapes.
This method allows us to identify a number of low-energy
configurations through complex transition mechanisms,
accessible even when starting from a rather simple structure.
We illustrated the power by applying it to study elemental
boron and silicon. The predicted allotropes of these elements
are energetically competitive and topologically related to some
known phases, thus likely to be synthesized by experiments.
The GEM technique can be generally used to systematically
search for metastable structures in other systems.
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