
New materials have historically been discovered by 
either trial-and-error processes or serendipity, both of 
which require labour-intensive and challenging exper-
iments. In the past decade, it has become possible to 
discover new materials systematically on a computer, 
and the path to this breakthrough has been paved by 
the development of crystal structure prediction (CSP) 
methods1–3. There are two largely complementary 
approaches: one based on existing knowledge and the 
contents of crystal structure databases (data mining) 
and the other based on powerful exploratory computer 
algorithms capable of making predictions with little or 
no pre-existing knowledge.

Databases such as the Inorganic Crystal Structure 
Database (ICSD)4 and the Pauling File5 are invaluable 
resources that report experimentally observed struc-
tures of inorganic materials. The ICSD currently con-
tains approximately 204,000 peer-reviewed data entries, 
and the Pauling File has some 335,000 entries; both 
databases are growing steadily. To date, approximately 
159,000 ICSD entries have been assigned to a little over 
9,000 distinct structure prototypes. However, the num-
ber of structures in the ICSD is small compared with the 
rapidly increasing number of structures that have been 
generated using first-principles methods.

Data mining approaches have received much atten-
tion6–9. In this Review, we focus on the fundamental 
and reliable non-empirical methods based on powerful 
exploratory algorithms. The major advantage of such 
methods is their ability to generate completely new 

knowledge beyond existing databases and intuition. We 
discuss these methods, examining the basic concepts 
and the systems they can be applied to. We then high-
light examples of recent discoveries of counterintuitive 
new materials and phenomena achieved through the 
use of these methods, ranging from superhard mate-
rials to electrides, organic materials and superconduc-
tors with the highest known critical temperatures10–12. 
We finally outline the future perspectives for the field, 
examining the challenges that will need to be over-
come, which include working with large systems and 
taking into account disorder and temperature, predict-
ing  synthesizable metastable structures and predicting 
chemical properties.

Considerations for materials prediction
Structure. Understanding the structure of matter at the 
atomic level is central to modern materials science. Until 
recently, experiments offered the only reliable source 
of crystal structures, but computational methods have 
emerged as a complementary source. In particular, 
density functional theory (DFT) methods and modern 
computing power can be combined to relax thousands 
of structures to local minima in the Born–Oppenheimer 
energy surfaces, the potential energy surfaces calcu-
lated in the approximation that the nuclear and elec-
tronic motions can be treated separately13. CSP aims to 
determine the minimum energy (or, in a more general 
case, the global minimum or maximum of a property 
of interest) over all values of the relevant inputs while 
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identifying the low-lying local minima (the metastable 
phases). Possible inputs could be, for example, the num-
bers and types of atoms in the system. A wide variety of 
systems can be handled by structure prediction, from 
molecules and clusters to 2D systems (2D crystals, crys-
talline surfaces or grain boundaries) and crystals (with 
quasicrystals beyond the scope of this Review). CPS has 
led to the discovery of many new structures that have 
subsequently been confirmed experimentally (Table 1). 
The possibility of discovering completely new structures 
is one of the key advantages of structure prediction as 

compared with data-driven approaches; data mining, on 
the other hand, can give reasonable, even if non-exact, 
solutions at a fraction of the computational cost.

The energy landscape. A very large number of struc-
tures can be generated using a source of randomness and 
then relaxing each of them to their lowest-energy local 
minimum. The basin of attraction is defined as the set of 
points within a structure space that leads to a particular 
minimum-energy configuration by a path of steepest 
descent on the potential energy surface. These basins of 

Table 1 | Selected examples of materials discovered or structurally characterized with the help of first-principles structure prediction

Year Material Description Refs

Crystalline materials

2011 Derivative-DNTT An organic semiconductor with high hole mobility (12.3–16.0 cm2 V−1 s−1) 193

2014 Zr2Co11 Hard magnet, structure of which was a long-standing puzzle 232

2014–2015 H3S Superconductor with one of the highest critical temperatures recorded (Tc = 203 K) 156,157

2011 δ-Mg(BH4)2 Hydrogen storage material obtained at elevated pressure (2.1 GPa) 48

2014 [–NH–CO–NH–C6H4–]n,  
[–CO–NH–CO–C6H4–]n, 
[–NH–CS–NH–C6H4–]n

Polymers with high capacitance 233

2016 ε-Resorcinol New polymorph with two molecules in the asymmetric unit obtained from melt 
recrystallization

188

2017 Coumarin (II–V) New polymorphs with various numbers of molecules in the asymmetric unit (1,2 or 3) 
obtained from melt recrystallization

190

2017 Glycine dihydrate and new 
phase of glycene

A previously unknown phase and the first hydrate form of glycine 189

2017 Sr5P3 Novel electride material 181

2014 ZrO Identification of suboxide phase in Zr/ZrO2 interfaces 234

2014–2015 Li7Ge3 Phase formed in the lithiation of Ge anodes 56,57

2008–2009 γ-B Superhard material, Hv = 50 GPa 138

2006–2013 M-carbon Superhard material 33,131,136

2014–2015 TiN2 Hard metallic phase (predicted Hv = 25.6 GPa) 150,151

2010–2013 FeB4 Superconducting and controversial superhard material 143,144

2015 β-Li15Si4 Anode for Li battery 59

2016 C3N4 Thermodynamically stable tetragonal high-pressure phase of C3N4 predicted, synthesized 
and recovered

235

2018 W2CrB2 and W4CrB3 Hard precipitates in superalloys 149

2014 P21/c-MnB4 and C2/m-MnB3 New hard material MnB3 (predicted Hv = 32.3 GPa). Refined and experimentally confirmed 
structure for MnB4 (predicted Hv = 40.1 GPa)

148

2017–2019 LaH10 Record high-Tc superconductor (experimental Tc = 250–260 K at 170–200 GPa) 10–12,169

2018 UH7 New compound, predicted to be superconducting (Tc = 46–66 K , stable above 22 GPa and 
metastable at 0 GPa)

236

2018 Na2B30 Chemical composition and crystal structure of a puzzling compound clarified; its near 
superhardness predicted (Hv = 37.4 GPa)

53

Beyond crystal structures

2014 B36
− First experimental evidence of a flat planar boron cluster 90

2014 B40
− First experimental evidence of boron fullerene 91

2014 Rutile-TiO2-(110) Elucidation of structures of a catalytically active surface 106

2016 Rutile-TiO2-(011) Elucidation of structures of a catalytically active surface 237

2017 2D tellurium First elemental 2D materials in group VI elements 96

2015 Ni3InAs Determination of the composition and structure of nickelide contact material for InAs 238

DNTT, DNA nucleotidylexotransferase; Hv, Vickers hardness; Tc, superconducting critical temperature.
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attraction cover the Born–Oppenheimer energy surface. 
Low-energy basins may be found clumped together in 
deep but smooth funnels, which allows the use of fast 
global optimization methods. The probability of suc-
cessfully finding a low-energy structure depends on the 
shapes and sizes of the hyper-volumes of the basins of 
attraction and the details of the search14–17.

A histogram of the energies provides information 
about the energy landscape of the system18. The effi-
ciency of searches can be improved by reducing the size 
of the structure space of interest. For example, knowl-
edge of existing structures and chemical and physical 
information can be used to ensure that the searches 
are initiated with a set of structures that are chemically 
reasonable while maintaining a large degree of ran-
domness. Various fingerprints (a fingerprint is a set of 
values permitting comparison of two crystal structures; 
for example, this could be a histogram of interatomic 
distances and angles in a structure) can be used to build 
maps18 of structural similarity (also known as sketch 
maps19), with similar structures located next to each 
other on a 2D space, allowing the visualization of mul-
tidimensional energy landscapes by introducing energy 
as the third dimension. It is also possible to build chem-
ical maps, displaying how the various materials struc-
tures or properties vary with chemical composition; this 
includes structure maps20,21 and maps of nanoparticle 
stability. The development of fingerprint functions that 
are sensitive to geometry as well as chemistry has led 
to the concept of materials cartography22, which goes 
well beyond energy landscapes and allows the group-
ing of materials into classes possessing similar physical 
properties before the properties are measured or even 
calculated. These concepts (Fig. 1) are extremely power-
ful, permitting the analysis and rationalization of large 
structural data sets.

Structural symmetries. The structure space can be 
divided into regions according to their symmetry. For 
a reasonably large system, almost all of the structure 
space consists of regions of the lowest P1 symmetry 
(the symmetry group that consists only of translations). 
This is obvious when it is realized that choosing random 
structures almost inevitably leads to a structure without 
symmetry. The fraction of the structure space covered by 
regions of P1 symmetry increases approximately expo-
nentially with system size. Yet, nature prefers crystal 
structures with symmetry, in contrast to usually asym-
metric, and metastable, biomolecules. Not only is the 
asymmetric P1 space group almost non-existent in crys-
tals, the distribution of crystal structures over Fedorov 
space groups is extremely uneven23–26. For example, 
one-third of all inorganic crystals belong to just 6 of the 
230 possible space groups, Pnma, P21/c, Fm3m, Fd3m, 
P-1 and I4/mmm26. For organic crystals, this uneven-
ness is even greater23; this is understood only partially. 
Pauling’s fifth rule27 (the number of essentially different 
kinds of constituents in a crystal tends to be small) can 
be simplistically viewed as implying that nature prefers 
high-symmetry structures with primitive unit cells con-
taining only a few atoms. Such structures may therefore 
be found in inexpensive searches. One line of reasoning 

is that low-energy structures tend to include repeated 
identical units (atoms, molecules or other units) because 
each atom in the structure may be most stable in a par-
ticular environment. Constraining searches to conform 
to high-symmetry space groups is a useful strategy. 
The allowed symmetries can be reduced systematically, 
which helps in discovering lower-symmetry structures 
that may sometimes be the most stable. Imposing sym-
metry constraints can provide enormous reductions in 
the search space; alternatively, one can use algorithms 
that automatically focus on the low-energy parts of the 
energy landscape (such as evolutionary algorithms, 
metadynamics or minima hopping) and achieve the 
correct structures with the right symmetries.

Chemistry. The 118 elements in Mendeleev's periodic 
table can be combined in many different ways to form 
an enormous number of distinct chemical compounds. 
There must be many more possible compounds and 
structures than those that have been reported from 
over a century of X-ray diffraction experiments. With 
118 elements in the Mendeleev table, 7,021 binary and 
273,937 ternary systems can be constructed (each poten-
tially with multiple stable compounds), but only 72% of 
binary, 16% of ternary and just 0.6% of quaternary sys-
tems have been fully or (probably more often) partially 
experimentally studied under normal conditions28, and 
far fewer have been studied in extreme conditions. The 
possibility of discovering completely new structures 
is one of the key advantages of structure prediction as 
compared with data-driven approaches. Many of the 
published results of structure predictions involve crystal 
structures or topologies that were previously unknown. 
This situation is even more frequent at non-standard 
conditions. Chemistry provides crucial understanding 
of the ways in which atoms combine to form stable mate-
rials and of the nature of the chemical reactions by which 
one material is transformed into another. However, what 
can we do in a situation in which the standard rules of 
chemistry do not apply? This can happen, for example, 
under extreme conditions of high pressure and/or tem-
perature. Nanoparticles and surfaces of crystals provide 
another setting in which to study unusual chemical 
phenomena.

Thermodynamics. Thermodynamics plays a central role 
in determining the structures that might be formed in 
nature or experiments. In real life, the effects of sam-
ple quality, annealing schedules, impurities or applied 
pressure are also important. Nevertheless, there are 
many examples in which the lowest-energy structure 
found at the DFT level of theory turned out to cor-
respond to the experimentally observed structure. 
Low-energy metastable structures may also be impor-
tant, as is the case for diamond. Most organic matter is 
also metastable.

Whereas the global energy minimum usually 
corresponds to an experimentally achievable stable 
crystal structure, nature shows some preferences in 
choosing which local-minimum (metastable) struc-
tures can be formed. Among the very large number of 
low-energy local minima, only a small subset appear 
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to be synthesizable, and it is not generally understood 
why the others cannot be made. Stevanovic connected 
the volume of phase space associated with each local 
minimum with the likelihood of synthesis of the cor-
responding structure17, and Sun29, analysing databases, 
found that observed metastable phases are usually 
less than 0.1–0.2 eV atom–1 above the ground state 
(explosives are a prominent exception). Furthermore, 
Sun29 hypothesized that observed metastable phases 
should be thermodynamically stable at some values 
of pressure, temperature, chemical potentials, elec-
tric fields, particle size and other parameters. If true, 
these hypotheses would hand thermodynamics a deci-
sive role in the prediction of  synthesizable metastable 
polymorphs.

Extending structure prediction to variable composi-
tions using chemical potentials allows the identification 

of stable compounds. The Maxwell convex hull con-
struction affords a particularly appealing approach that 
can be used to identify stable and metastable structures 
and stoichiometries (box 1; Fig. 2). A structure on the 
convex hull is thermodynamically stable, and a struc-
ture above the hull is metastable. Note that there are 
potentially an infinite number of stoichiometries, and 
for each stoichiometry, there may be an infinite number 
of structures, although the number of different struc-
tures is reduced in systems with periodic cells or clusters 
with a finite number of atoms. Convex hull construction 
provides a global view of the relative stabilities of struc-
tures and stoichiometries, and can be used for binary, 
ternary and quaternary systems and so on. Examples of 
convex hulls for binary (Na–Cl) and ternary (Mg–Si–O) 
systems are shown in Fig. 2a,b. In the Na–Cl system, the 
only stable compound at normal conditions is NaCl; 
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Fig. 1 | Mapping the materials space. a | Energy landscape of crystalline Au8Pd4, showing how the low-energy structures 
cluster in one area39. b | Stability map of SinOm nanoparticles, showing ridges and islands of stability and a sea of instability89.  
c | Superconducting materials cartogram22. In all these cases, neighbouring points turn out to have similar structures and 
properties, and materials possessing particular stability or maximal properties are clustered in the same area of the map. 
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Panel a is adapted with permission from Oganov, A. R . et al. How evolutionary crystal structure prediction works and why.  
Acc. Chem. Res. 44, 227–237 (reF.39), copyright 2011 American Chemical Society. Panel b is adapted with permission from 
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permission from reF.22, ACS.
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however, under pressure, numerous Na–Cl compounds 
become stable30, such as Na3Cl and NaCl3. Similarly, 
a very surprising compound, Na2He, was predicted to 
be stable at pressures above 100 GPa (reF.31). These com-
pounds were synthesized experimentally30,31, and their 
structures are shown in Fig. 2c,d. The convex hull of the 
Mg–Si–O system (this system is a first approximation to 

the composition of mantles of terrestrial planets) at 500 
GPa shows some new compounds that are unknown at 
normal conditions32.

Materials discovery and design. The ability to make 
reliable predictions of likely compositions and their 
structures means that computational methods can 
routinely complement experimental efforts in search-
ing for new candidate materials. These searches may 
target a chosen property (design) or survey a range of 
 possibilities with minimal preconceptions (discovery).

Crystal structure prediction
Following a simple combinatorial argument33, the num-
ber of possible distinct structures for a compound with 
N atoms in a unit cell of volume V can be estimated as:

∕
∕

∕
C

V δ
V δ

V δ N N
= 1
( )

( )!
[( )− ] ! !

(1)3

3

3

where δ is a relevant discretization parameter (for 
instance, 1 Å). Already for small systems (N ≈ 10–20), 
C is astronomically large (roughly 10N using δ = 1 Å 
and a typical atomic volume of 10 Å3) and increases 
exponentially with the number of degrees of freedom  
d (d = 3N + 3): C ≈ exp(ad), where a is some 
system-specific constant. Clearly, it is not feasible to 
examine all possible arrangements of the atoms in space 
— there are just too many of them.

If each structure is relaxed, the number of degrees 
of freedom will decrease because correlations between 
atomic positions will emerge (interatomic distances 
adjust to reasonable values, and unfavourable interac-
tions are avoided). Because the complexity of the prob-
lem is exponential in d, this simple trick simplifies the 
problem greatly, as it reduces the effective d. For exam-
ple, d is reduced from 39 to 10.9 in Au8Pd4, from 99 to 
11.6 in Mg16O16 and from 39 to 32.5 in Mg4N4H4 (reF.34). 
Not surprisingly, all successful structure prediction 
methods include structure relaxation. Nevertheless, even 
for relaxed structures, one encounters the ‘exponential 
wall’, or non-deterministic polynomial-time (NP)-
hard behaviour: the number of possible local minima 
increases exponentially with the number of atoms in the 
unit cell (for a rigorous proof, see reF.35), though with a 
reduced exponent.

Among the most popular CSP methods are random 
sampling15,36–38, various evolutionary algorithms39–44, 
metadynamics45 and minima hopping46,47 (box 2).

Working with experiment. Combining structure pre-
diction with diffraction or other experimental meth-
ods has provided a very successful approach to solving 
crystal structures. Some diffraction data may be insuf-
ficient to permit the solution of a particular structure, 
and sometimes even the exact stoichiometry is hard to 
establish, but information on lattice constants is often 
available, as perhaps are some indications of likely 
space groups. Knowledge of the lattice constants pro-
vides powerful constraints on the possible structures, 
which greatly simplifies the searching. Low-quality 

Box 1 | Crystal structure prediction with multiple solutions

Crystal structure prediction aims to determine the lowest-energy structures, whereas  
the discovery of materials with a set of desired properties is aimed at a vast chemical  
and structural space. In this case, researchers usually do not look for a single  
solution in crystal structure searches. Instead, they search for multiple solutions.

Convex hull optimization
Discovering new materials requires an exploration of all possible stoichiometries for 
a given chemical system. To take into account the variation of chemical composition, 
we can devise a strategy to examine a range of compositions of interest for the given 
chemical system using a suitable fitness function (a function that enables ranking of 
candidate solutions by their optimality) to evaluate and compare structures with 
different stoichiometries. For a set of compounds with different stoichiometries, 
the stability can be measured by the minimum energy of transformation into an  
isochemical mixture of other phases. let us take a binary system A–B as an example.  
The normalized energy of formation of AxB1−x can be expressed as:

� = − + −−( )E E A B xE A x E B[ ( ) (1 ) ( )] (3)formation x x1

where E(AxB1−x) is the energy of the compound (normalized per atom) and the  
expression in brackets is the energy of the mixture of stable forms of A and B. A negative  
energy of formation is a necessary but not a sufficient condition of stability. A necessary 
and sufficient condition is that stable phases form a convex hull, as shown in the plot.  
A suitable fitness function is the minimum vertical distance from the convex hull (Ehull).  
The generalization of this scheme to multicomponent systems is straightforward.

Pareto optimization
If the aim is to suggest new materials with optimum physical properties, at least two 
variables need to be optimized: the target physical property (or properties) and 
stability. The solution of such a multi-objective optimization problem is, in general, not 
one material but a set of materials forming the so-called first Pareto front. It is good 
practice to pay attention to not only the first Pareto front but also the few lowest-rank 
Pareto fronts. The first Pareto front consists of the so-called non-dominated solutions, 
materials that cannot be beaten on all properties at the same time (but may be beaten 
on some). Removing the first Pareto front and repeating the same procedure gives the 
second Pareto front and so on. In the simplest scheme, the rank of the Pareto front can 
be used as fitness in multi-objective optimization. In practice, Pareto optimization 
works well when the number of objectives is not large, such as, less than four. In the 
figure below, the first three Pareto fronts are shown; the data were obtained from 
Pareto maximization of hardness and minimization of an instability (Ehull) for the  
Cr–B system.
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diffraction data may be misinterpreted in experiments, 
and structure prediction could yield better models for 
structural refinement48–50. Constraints from vibrational 
data, solid-state NMR, X-ray absorption spectroscopy 
and other spectroscopies can also be exploited. Once a 
technologically useful material is predicted, it is impor-
tant to try to verify it by experiment. Knowledge of the 
crystal structure is crucial for understanding the per-
formance of materials, and when experimental data are 
insufficient, structure prediction is helpful. For exam-
ple, CSP has resolved a long-standing controversy over 
the structure and stoichiometry of sodium boride: in 
addition to the undisputed Na3B20, a phase identified by 
some researchers as orthorhombic (Imma) Na2B30 (reF.51) 
and by others as monoclinic (C2) Na2B29 (reF.52) has 
been observed. This intriguing phase has been recently 
solved by CSP53, which established that the correct stable  
stoichiometry is Na2B30 and that neither of the previously 
proposed structures are global minima. The predicted 
I212121 structure matches experiments. Unlike metal-
lic Na2B29 or semi-metallic Imma-Na2B30, this phase 
is semiconducting and nearly superhard (predicted 
Vickers hardness 37.4 GPa). The structure of β-NiOOH 
(reF.54), an active component of the highly active cata-
lyst for water oxidation, was fully established thanks to 

CSP. Likewise, a newly predicted reconstruction of the 
(110) surface of rutile-type RuO2 (reF.55) has explained 
the extraordinary pseudocapacitance of RuO2 and estab-
lished that it is partly due to a surface redox reaction. 
A Li7Ge3 phase was first proposed in a CSP study56, and 
the structure was later observed in experiments57.

At high pressures, the quality of experimental infor-
mation is often insufficient for solving crystal struc-
tures. In such cases, theoretical input is invalu able. 
Neutron studies of ammonia monohydrate phase II  
found a detailed powder diffraction pattern with 
numerous well-defined peaks. However, the structure 
could not be solved using the experimental data alone. 
Ab initio structure searches using the known unit 
cell parameters and likely space groups as constraints 
uncovered a structure with 112 atoms in the unit cell, 
in almost perfect agreement with experiment50. Several 
high-pressure phases of Mg(BH4)2 were synthesized and 
apparently convincingly resolved using powder X-ray 
diffraction data58. However, a subsequent CSP study 
suggested that two new tetra gonal structures with space 
groups P-4 and I41/acd were lower in enthalpy than 
the earlier proposed experimental P42nm structure by  
15.4 kJ mol–1 and 21.2 kJ mol–1, respectively48. Interestingly, 
the X-ray powder diffraction (XRD) patterns of all  
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three structures are compatible with experiment at 
ambient pressure. However, I41/acd is the true thermo-
dynamic ground state, whereas P42nm is not even a local 
minimum. Li15Si4, a potentially useful anode material 
for Li-ion batteries, has been found59 to undergo a phase 
transition to an unknown structure at a pressure of  
7 GPa, but the structure could not be solved experimen-
tally; evolutionary metadynamics calculations starting 
from the ambient-pressure structure (with 152 atoms 
in the unit cell) have identified the Fdd2 structure, 
which reproduces the experimental XRD pattern. The 
newly discovered β-Li15Si4 is recoverable to ambient 
conditions and may exhibit improved cycling prop-
erties (for example, it has a smaller volume change 
upon delithiation).

Molecular crystals under pressure. The use of mole-
cules, rather than single atoms, as building blocks allows 
much more complex structures to be predicted. Already 
the simplest molecular solid, hydrogen turns out to 
be not so simple. The experimental determination of 
high-pressure phases of solid hydrogen is very challeng-
ing because of the small X-ray scattering cross-section 
and small sample sizes in high-pressure experiments60,61. 
Raman and infrared spectroscopies have provided a great 
deal of vibrational data60,62,63; however, it was not possible 
to resolve the structures of phases III and IV using the 
available vibrational data. Structure searches found that 
the lowest-enthalpy phases III (theory finds two variants 
of phase III64,65) and IV62 are layer-like with Raman and 
infrared spectra in good agreement with experiment. 

Box 2 | Crystal structure prediction

The crystal structure prediction (CSP) problem is a global optimization 
problem. of critical importance are the development of smart global 
optimization algorithms to navigate the structure space, methods for 
calculating structural energies and properties and for local optimization 
of geometries and the increase in available computing power.

Geometry optimization
efficient structure relaxation requires the calculation of forces and 
stresses. The simplest, but usually not the most efficient, algorithm is the 
steepest descent algorithm, in which atomic coordinates and lattice 
vectors are updated iteratively, moving along the force and stress 
direction. In this algorithm, only the current positions of atoms and forces 
are considered. The conjugate gradients algorithm also requires only the 
forces and stresses (that is, the first derivatives of the energy), but it takes 
history into account and is usually more efficient. Knowledge of the 
matrix of second derivatives (Hessian) can greatly accelerate 
convergence to the local minimum, and the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm constructs an approximate numerical Hessian 
for this purpose. more efficient algorithms based on conventional 
molecular dynamics with additional velocity modifications and adaptive 
time steps are also available216.

Methods not based on global optimization.
Two important approaches belong to this group: data mining6–8 and 
cluster expansion211,212. Data mining allows very quick predictions of the 
stable crystal structure and is efficient in searching for materials with 
optimal properties but, relying on databases of crystal structures, is 
unable to predict completely new crystal structures. Cluster expansion 
starts with knowledge of the underlying crystal structure and allows the 
prediction of the ordering of the atoms and/or magnetic moments  
as a function of temperature. Both methods require considerable 
amounts of pre-existing structural information, whereas predicting 
crystal structures by global optimization requires little or no such 
information.

Global optimization methods and codes
Global optimization is a very large field in applied mathematics (for an 
introduction, see reF.217), with many methods continually developed. In 
application to CSP, it is important to remember that no existing method 
can give a guarantee of finding the global minimum in a finite amount of 
computational time. We list here some popular methods.

• The simplest search strategy, used since 1993 (reF.36), would be to 
sample structures quasi-randomly15,36–38; however, in practice, it is 
crucial to steer the searches towards finding realistic structures while 
maintaining structural diversity. This is achieved by imposing constraints 
on symmetry, interatomic distances, coordination numbers, 
stoichiometries, dimensionality and structural units.

• Simulated annealing218,219 is a strategy inspired by annealing of crystals, 
in which gradual cooling leads to the equilibrium crystal structure. 

Importantly, structure relaxation is not performed during this process, 
and it is done only during the analysis of results.

• Basin hopping220 combines, in a loop, large steps in the configuration 
space followed by structure relaxation and uses the metropolis criterion 
for the accept/reject step at each move.

• metadynamics45 requires a collective variable to distinguish between 
states of the system (for CSP, cell vectors are currently used for this 
purpose as a pragmatic, but imperfect, choice) and scans the 
low-energy part of the energy landscape by distorting the landscape by 
a history-dependent potential, the aim of which is to discourage the 
system from sampling states that have already been sampled. 
metadynamics finds low-energy structures and transition paths 
between them.

• minima hopping46 performs short molecular dynamics runs followed by 
structure relaxation. If the relaxation leads to a structure that has already 
been visited, a new molecular dynamics calculation is initiated at a higher 
temperature, and this process is continued until a new structure is found.

• evolutionary algorithms come in many types with widely different 
performance33,40–44,221–223 (the most popular are the oganov–Glass 
evolutionary algorithm33,78 and Wang’s version of particle swarm 
optimization42). The common idea is that a population of structures is 
evolved, driven by natural selection of lower-energy structures that become 
parents of a new generation of structures. Recipes for producing offspring 
from parents (genetic crossover and mutations) are of key importance. 
Hybrid methods also exist, for example, evolutionary metadynamics224.

Some publicly available codes for structure prediction (with their main 
areas of application) include the following: AIRSS (inorganic); CALYPSO 
(inorganic); CrySPY (inorganic); DmACRYS (organic); GASP (inorganic); 
GAtor (organic); GRACe (organic); MAISE (inorganic); molpak (organic); 
uPack (organic); USPeX (inorganic and organic); and Xtalopt (inorganic).

Computation of structural energies
First-principles structure prediction has been made possible by the 
development of robust and efficient density functional theory (DFT) 
codes and high-quality pseudopotentials across the periodic table225. 
DFT calculations become too expensive for large systems, but there is 
rapid progress in the development of machine learning force fields226–228, 
which need to be trained on DFT data (energies, forces and stresses) and 
may deliver the same accuracy as first-principles methods with a speed 
up of 2–4 orders of magnitude. Recently, it has been demonstrated 
that combining CSP and machine learning force fields works well in 
applications140,229,230. In addition to the use of machine learning for 
constructing force fields, it is possible to develop quantitative structure–
property relations9 and then inexpensively predict (or optimize) properties 
of interest. Normally, properties should be computed for carefully relaxed 
structures, but at least semi-quantitatively, they can be computed from 
just the chemical composition and topology of the structure231.
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Experimental evidence for a phase V of solid hydrogen 
was reported63, and DFT calculations66 suggested that 
it could be a stepping stone towards metallization of 
hydrogen. Structure searches have thus advanced knowl-
edge of the phase diagram of hydrogen at high pressures 
and low temperatures.

Simple molecules such as water, ammonia and 
methane are fundamental to chemistry and make up 
most of the gas giant planets Uranus and Neptune, 
though in the liquid state. Their behaviour under 
pressure is complicated, for example, ice has 17 exper-
imentally identified polymorphs on the phase diagram 
at pressures up to 210 GPa (reFs67,68). Under pressures 
of 90–331 GPa, ammonia was predicted to form ionic 
solids consisting of NH4

+ and NH2
− ions69. Two crystal-

line ionic forms, Pma2 and Pca21, were confirmed by 
experiment70. The identification of the high-pressure 
phases of solid methane above 5 GPa provides another 
example of successful interplay between theory and 
experiments. Experiments suggested that a new solid 
phase of methane A above 5 GPa should contain 
21 molecules in a pseudo-cubic rhombohedral unit 
cell, yet the structure could not be solved71. On the 
basis of the experimentally determined cell parameters, 
a CSP study revealed a ground state of rhombohedral 
symmetry with icosahedral packing of methane mol-
ecules72, very similar to the results of a recent neutron 
diffraction experiment73 except that orientationally 
ordered molecules were used in refining the diffrac-
tion data. Moreover, compressed methane displays an 
icosahedral structure reminiscent of intermetallics that 
are prone to the formation of quasicrystals, which leads 
to the  question of whether molecular quasicrystals 
are possible74.

Role of databases. The increasing growth of open com-
putational materials databases makes the screening of 
materials with target properties possible. Exploitation 
of pre-existing data is very important. Existing data-
bases are largely populated by experimentally deter-
mined structures, but the computational discovery of 
structures also feeds into databases and is increasing the 
power of data-driven approaches. We are confident that 
there will always be a need for structure prediction: even 
if it were possible to computationally capture all of the 
hidden structures, the need to explore and predict their 
defects, surfaces and behaviour at non-ambient condi-
tions will keep driving efforts in structure prediction. 
The capability of first-principles approaches to unlock 
new discoveries indicates that they will have the same 
long-lived importance as experiments. The main aims 
of computational predictions for structures of materi-
als are to predict materials with a desired combination 
of properties for technological applications; to predict 
stable and metastable compounds and crystal structures 
at various conditions, including those difficult to reach 
experimentally; to discover previously unknown struc-
ture types and topologies; and to help in determining the 
structures adopted by specific materials.

Perhaps the simplest way to increase the number 
of structures is to create ‘chemical mutations’ of known 
structures. For example, starting from an elemental 

structure composed of several atoms, we can replace 
some of them by other atomic types, perhaps from the 
same column of the periodic table, in the same spirit 
as the substitution method used in data mining75.  
This might lead to the generation of many very similar 
structures, but it could also lead to new structures.

A high-throughput survey based on both data mining 
with chemical substitution and evolutionary algorithms 
has been recently conducted to search for new photoac-
tive semiconductors76. Four metastable compounds were 
identified, and in all of them, evolutionary searches found 
lower-energy structures than data mining: for Sn5S4Cl2 by 
24.7 meV atom–1, for Sn4SF6 by 5.1 meV atom–1, for Cd4SF6 
by 0.2 meV atom–1 and for Cd5S4Cl2 by 33.3 meV atom–1. 
None of these structures can be found by data mining 
alone; all, except Cd5S4Cl2, have no known structural 
analogues, and whereas Cd5S4Cl2 belongs to the known 
Li5BiO5 structure type, it was not found by the substi-
tution algorithm because of the very unusual coupled 
substitution required: Bi + O→2Cl.

Very recently, a co-evolutionary method, called 
Mendelevian search, was developed77. It can be viewed 
as evolution of a population of evolutionary searches, 
each of which focuses on a particular chemical system; 
these systems compete and exchange information with 
each other, leading to progressively better systems being 
sampled. This method, using no empirical information, 
found that the hardest possible materials are allotropes 
of carbon, diamond and lonsdaleite and that the high-
est possible magnetization at 0 K is achieved in iron. In 
addition, it predicted a number of interesting materials.

Discovering materials with optimal properties. 
Metastable materials are often more interesting for appli-
cations than stable ones, for example, diamond, glasses 
and most organic molecules are metastable, but there 
are an infinite number of possible metastable materials, 
so a method is needed to predict those with interesting 
properties that can be synthesized. Much can be learned 
from a systematic analysis of the rich data produced by 
CSP, but there are also special methods that target the 
low-energy part of the energy landscape at the expense 
of extensive sampling of high-energy structures — 
among these are metadynamics45, minima hopping47 
and evolutionary algorithms33,42,78.

Furthermore, it is possible to search for materials with 
an optimum value of a physical property (or multiple 
properties) of interest. We argue that computation-based 
non-empirical searches offer the most reliable path to dis-
covering materials with superior properties. In general, 
three types of global optimizations can be imagined.

The first is the minimization of the thermodynamic 
potential to determine stable structures. The internal 
energy E must be minimized to find the most stable 
structure of a given chemical compound at zero pressure 
and temperature. When working at non-zero pressures, 
the enthalpy H must be minimized in equilibrium. 
When working at non-zero pressures and temperatures, 
the Gibbs free energy G should be minimized.

The second option is the optimization of the phys-
ical property of interest (such as the hardness79,80, den-
sity81, bandgap82 or the thermoelectric figure of merit83). 
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These should be extremized, or some target value must 
be approached, for example, for absorption of sunlight, 
a direct gap as close as possible to 1.34 eV is desirable. 
This predicts the upper limit of materials performance, 
but may lead to an ill-defined problem when there is 
no upper limit or produce structures that are so high in 
energy that they cannot be synthesized.

The third type of global optimization is the 
multi-objective (Pareto) optimization, in which two 
or more properties are simultaneously optimized. In 
our opinion, this type of optimization is most directly 
related to practical applications; for example, simulta-
neously optimizing the stability and physical properties 
of interest, as was done for superhard materials84,85 and 
thermoelectrics83, leads to the identification of mate-
rials that have attractive properties and at the same 
time can potentially be synthesized. The solution of a 
multi-objective optimization problem is, in general, not 
one material but a set of materials forming the so-called 
first Pareto front (box 1).

Beyond crystal structure
Structure searches using first-principles methods are not 
confined to 3D systems. It is also possible to search for 
structures of point defects, clusters, solid surfaces and 
interfaces. The prediction of non-crystalline structures 
presents challenges, but it is extremely important, and 
considerable progress has been made.

Nanoclusters. Materials strength is largely determined 
by microstructure. Nanostructuring can be exploited 
to obtain extreme materials properties, for example, in 
thermoelectrics (to decrease thermal conductivity), 
in catalysts and batteries (to increase the effective surface 
area) or in structural materials (to improve hardness, 
exploiting the Hall–Petch effect). Quantum confinement 
enables tuning the electronic and optical properties of 
nanoparticles by changing their size. Furthermore, the 
chemistry of nanoparticles can be very sensitive to 
the chemical environment, and quite unexpected cluster 
compositions can be ‘magic’, that is, particularly stable; 
for example this was shown for Fe–O and Ce–O clus-
ters86. It has been shown that, under normal conditions 
(300 K and 0.21 atmospheres partial pressure of O2), the 
predominant Si7Om, Fe4Om and Ce4Om nanoparticles are 
oxygen-rich magnetic Si7O19, Fe4O8 and Ce4O14 clusters 
rather than normal Si7O14, Fe4O6 and Ce4O8, respec-
tively86,87. The presence of reactive oxygen species, such 
as ozonide-groups (O3

2–), in such clusters may explain 
the known carcinogenicity of small silica particles88. An 
evolutionary method89 was developed for the simultane-
ous prediction of structures of clusters in wide ranges of 
chemical compositions and for the automatic prediction 
of magic clusters; this method automatically produces 
nanoparticle stability maps similar to those presented in 
Fig. 1b and showed a 5–50 times speed up compared with 
a one-by-one study of all cluster compositions.

There has been much interest in making boron 
nanostructures that are analogous to carbon nanotubes, 
fullerenes and graphene. Although photoelectron spec-
troscopy (PES) can yield well-resolved spectra serving 
as an electronic fingerprint, structure determination 

relies on input from theory90,91. Ground-state structures 
were found to be very diverse; for example, B36

− has a 
quasi-planar structure, whereas a fullerene-like cage 
structure becomes energetically favourable in B40

−. 
The calculated PES spectra agree satisfactorily with 
experiments.

2D crystals. The discovery of graphene, with its remark-
able physical properties and potential applications 
ranging from reinforcing structural materials to novel 
electronics, has initiated tremendous efforts on 2D 
materials research. Much of the early research focused 
on obtaining 2D materials from bulk samples, for exam-
ple, by mechanical exfoliation. This requires the bulk 
material to have a layered structure with weak interlayer 
bonding so that a few atomic layers can be exfoliated and 
hopefully remain stable in air without significant atomic 
rearrangement. A number of 2D materials beyond 
graphene were discovered using this strategy, including 
transition-metal dichalcogenides (MX2), transition-metal 
carbides or nitrides (MXenes) and phosphorene, a single 
layer of black phosphorus. A computational screening 
(data mining) revealed that 826 stable layered materi-
als could be considered as candidates for the formation 
of 2D monolayers via exfoliation92. An evolutionary 
method has been developed that can predict viable com-
positions and structures of free-standing 2D materials 
using no experimental information93. In addition to 
free-standing 2D materials, there is also great interest in 
pursuing 2D materials grown on a substrate. Given the 
various choices of substrate materials and the complex 
interactions between substrates and 2D materials, the 
potential search space is massive, making first-principles 
predictions an invaluable tool. Indeed, the discovery of 
two allotropes of borophene94 was stimulated by a the-
oretical prediction95. More recently, 2D tellurium has 
been proposed96. Though challenging to make, this 
class of material may exhibit advantageous properties. 
For instance, unlike bulk boron allotropes, borophene 
shows metallic conductivity, whereas the effective masses 
of charge carriers in semiconducting 2D tellurium are 
calculated to be three or four times lower than in MoS2, 
a commonly studied 2D semiconductor. 2D materials 
can also be formed by molecules; for example, 2D ice 
has been studied extensively under various experimen-
tal conditions. Despite their relevance to disparate areas 
such as cloud microphysics and tribology, the phase tran-
sitions in low-dimensional ice are not fully understood. 
Inspired by the observation of ‘square ice’ sandwiched 
between graphene sheets, constrained searches have 
revealed a rich phase diagram of 2D ice97–99 (Fig. 3a).

Surfaces. Surfaces of many materials, especially semi-
conductors, usually have different structures from the 
bulk, and their reconstructions play a key role in deter-
mining their properties and behaviour (such as epitaxial 
crystal growth or catalysis). The prediction of surface 
reconstructions is a long-standing problem. Just as for 
crystals, it is not possible to enumerate all reconstruction 
models, nor does chemical intuition suffice to produce 
reliable models, even for elemental systems (consider 
the complexity of the Si-(111) 7 × 7 reconstruction100). 
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The extremely large search space makes surface struc-
ture prediction difficult, and a number of methods have 
been proposed101–105. An evolutionary technique to pre-
dict surface structures based on the evolutionary algo-
rithm USPEX has been developed101. It allows automatic 
exploration of stable and low-energy metastable configu-
rations with variable stoichiometry and variable surface 
cells in the physically accessible range of chemical poten-
tials101. This method has helped to resolve controversies 
about the reconstructions of the (110) surface of rutile 
(TiO2)106 and, because surface band structure depends on 
the atomic arrangements, can be used to tune functional 
materials to obtain better light absorption properties107. 
At different values of the chemical potential of oxygen, 
four different surface phases were observed for this 
surface; theoretically predicted models106 provide inval-
uable insights into previous experiments. Additional 
degrees of freedom can also be explored, such as fer-
roelectric polarization, which was investigated for the  
BaTiO3-(001) surface108.

Interfaces and grain boundaries. Grain boundaries 
can exhibit different phases depending on the con-
ditions of formation; studying the phase diagrams of 
grain boundaries is an emerging field109. In the tradi-
tional γ-surface approach, grain boundary models are 
constructed by joining two misoriented crystals while 
sampling different translations of the grains parallel to 
the grain boundary plane. The lowest-energy configu-
ration is then taken to be the ground state. Calculations 
of silicon twist boundaries showed ordered ground 
states at 0 K (reF.110). A method based on molecular 
dynamics that allows variations in the atomic density 
was also proposed111,112. Application of these methods to 
fcc metals (Cu, Ag, Au and Ni) using embedded-atom 
force fields led to the prediction of new ground states 
and multiple phases of several [001] symmetric tilt 

boundaries with different atomic densities and complex 
periodic units many times larger than those of the bulk 
crystals111,112. Both ab initio random sampling113 and 
evolutionary114,115 approaches have been applied to the 
first-principles prediction of grain boundaries. The evo-
lutionary approach samples grain boundary structures 
with varying numbers of atoms and cell sizes; a rich pol-
ymorphism of grain boundary structures of symmetric 
tilt boundaries of copper and of a series of bcc metals 
were found within the entire misorientation range114,115 
(Fig. 3b). Grain boundary structure prediction has been 
extended to multicomponent systems, such as stoi-
chiometric interfaces between silicon and alumina116 
and non-stoichiometric grain boundaries in SrTiO3 
(reFs113,117,118). Grain boundaries can display new physics 
through quantum confinement effects and unexpected 
stoichiometries; the observed superconductivity at 
LaAlO3/SrTiO3 interfaces119 is still unexplained. Grain 
boundary structure prediction will enable the design of 
polycrystalline and composite materials.

Point defects. Localized defects frequently determine 
the physical properties of materials. Semiconductors 
are doped by introducing impurities, and ionic con-
ductivity is controlled by vacancies in the host lattice. 
The nitrogen-vacancy centre in diamond has been sug-
gested as a source of qubits for future quantum tech-
nologies120. Until recently, atomistic models of defects 
were hand-built using a combination of intuition and 
pre-existing structures in related systems; one exam-
ple is the model of the silicon tetra-interstitial121 based 
on earlier results122 on the structure of nitrogen plate-
lets in diamond. Using random structure searches38, 
interstitial defects in silicon were explored by remov-
ing 5 silicon atoms from an atom-centred sphere in a 
32-atom supercell. Six silicon atoms were then repeat-
edly and randomly placed within the void, and the 
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resulting structures were relaxed using DFT methods 
and ranked according to total energy. Split-<110> and 
hexagonal interstitial structures were readily recovered 
as the most stable configurations. This approach was 
further developed and applied to a variety of complex 
defects in silicon123,124 and zirconolite125. An extension 
of the convex hull construction was proposed to pro-
vide a graphical representation of the relative stability of 
point defects with variable composition126. Albeit with a 
focus on empirical potentials, an evolutionary algorithm 
has been developed specifically to explore local defect 
structure127.

Examples of new materials
Hard and superhard materials. Hard materials are 
essential for cutting, drilling and machining tools. 
Pioneering experiments128 and subsequent studies129,130 
have shown that compression of graphite at room tem-
perature to ~17 GPa creates a new transparent superhard 
allotrope of carbon. It was found131 that a monoclinic 
metastable structure called M-carbon, first reported 
in reF.33, matches experimental X-ray diffraction pat-
terns, though other structures were later proposed132–134 
and shown to match the low-resolution experimen-
tal data. Later, a transition path sampling calculation 
suggested that M-carbon has the lowest barrier of for-
mation from graphite at room temperature; thus, it is 
kinetically the most likely to form among all sp3 carbon 
forms135. Finally, a higher-resolution X-ray diffraction 
study produced patterns that were compatible only with 
M-carbon, supporting its identification as the structure 
of the metastable superhard carbon allotrope136.

All boron allotropes are superhard137, that is, they 
have Vickers hardness >40 GPa. The structure of its 
hardest allotrope, γ-boron, was predicted and then con-
firmed by experiment138. γ-Boron has a very wide sta-
bility field, in the range of 8–89 GPa, and a hardness of 
50 GPa (reF.139) and is recoverable to ambient conditions, 
which means it could in principle be used as a superhard 
material (the only problem being the need to use high 
pressure for synthesizing it). Several low-energy meta-
stable structures were predicted16,140 and may eventually 
be synthesized.

Transition-metal borides, carbides and nitrides com-
prise a prominent class of hard materials. Cr–B, Cr–C 
and Cr–N systems were explored to search for maxi-
mally hard and stable phases using Pareto optimiza-
tion84. It was found that CrB4 is the hardest compound 
among these systems; its predicted hardness is 48 GPa, 
making it superhard84,141. The W–B system was also 
studied142, and among the predicted new stable phases 
was WB5, with a predicted hardness of 45 GPa and a 
very high fracture toughness of 4 MPa m−½; this material 
was predicted to retain excellent mechanical properties 
even at high temperatures (~2,000 K). Borides may in 
general be more promising systems for finding super-
hard materials than carbides or nitrides because elec-
trons donated by metal atoms to carbon or nitrogen will 
occupy antibonding orbitals, whereas electron-deficient 
boron, accepting an electron (according to the Zintl–
Klemm rule), will behave like a carbon atom; thus, metal 
borides can be analogous to superhard sp3 forms of 

carbon. Within this picture, borides can be harder than 
pure boron allotropes but cannot exceed the hardness of 
cubic BN (~60 GPa). A CSP study143 suggested the exist-
ence of semiconducting FeB2 and superconducting FeB4.  
The latter was predicted to be marginally metastable 
but was synthesized under moderate pressures of 8 GPa 
(reF.144) and found to be superconducting (with a super-
conducting critical temperature, Tc, < 2.9 K) and contro-
versially superhard (the measured144 hardness of 62 GPa 
is most likely a large overestimate145,146).

The compositions and structures of stable and 
low-energy metastable borides of 41 metals have been 
thoroughly studied in a work147 that provided a useful 
broad-brush picture. Furthermore, a P21/c structure of 
MnB4 (reFs147,148) was found to be the ground-state struc-
ture, rather than the C2/m structure (reported in an early 
experimental work but later shown to be dynamically 
unstable), and a new compound, MnB3, was predicted148 
to be stable at normal conditions. Predictions of both 
MnB3 and the P21/c structure of MnB4 have been con-
firmed by experiments148. Both MnB3 and MnB4 were 
predicted to have very high Vickers hardnesses of 32.3 
GPa and 40.1 GPa, respectively. Using a combination of 
variable-composition compound prediction and scan-
ning transmission electron microscopy, tiny (~200 μm in 
size) W–Cr–B precipitates in a Ni-based superalloy were 
explored149. CSP searches revealed two stable ordered 
stoichiometric ternary borides, W2CrB2 and W4CrB3, 
the structures of which explain experimental observa-
tions. Crystal structure of precipitate phases is impor-
tant for understanding the precipitation hardening of 
superalloys. A study on the Ti–N system at pressures up 
to 60 GPa found several new stable phases150, the most 
extraordinary and hardest of which is titanium perni-
tride I4/mcm-TiN2 (predicted Vickers hardnesses of 
25.6 GPa at ambient pressure), which was subsequently 
synthesized151.

Superconductors. Superconductivity is used, among 
other applications, in magnetic resonance imaging 
(MRI), magnetic levitation, particle colliders and fast 
electronic switches. Superconductivity can be classified 
as conventional, based on the phonon-based Bardeen–
Cooper–Schrieffer (BCS) mechanism with s-wave 
electron-pairing, or unconventional, based on a mecha-
nism that is still not theoretically understood. Until 2014, 
all high-temperature superconductors were cuprates 
displaying unconventional superconductivity, and the 
record for the highest Tc was held by HgBa2Ca2Cu3O8+δ, 
with a Tc of 133 K (reF.152) at ambient pressure, increasing 
to 166 K at 23 GPa (reF.153).

An upsurge in searches for high-Tc conventional 
superconductors was initiated by Ashcroft’s prediction of 
potential high-Tc superconductivity in solid hydrogen154 
and in hydrogen-rich materials155. Three properties of 
metallic hydrides are of particular importance here: the 
presence of a high hydrogen-derived electronic density 
of states close to the Fermi level, strong electron–phonon 
coupling and high phonon frequencies.

Ground-breaking work on hydrogen sulfide at high 
pressures led to a new record of high-temperature super-
conductivity in H3S, with a Tc of 203 K at ~155 GPa. 
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H3S was predicted156 computationally using the USPEX 
code and then verified experimentally157. This is the first 
example of a previously unknown material predicted to 
be a high-temperature superconductor that has been 
confirmed experimentally. H3S at high pressures was 
found to be a strongly anharmonic phonon-mediated 
superconductor exhibiting hydrogen bond symmetri-
zation158,159. The predicted high-pressure structure of 
H3S was confirmed experimentally160,161. Conventional 
H2S was found to decompose readily at high pressures, 
and the energetics of this process were studied using the 
AIRSS and CALYPSO structure prediction methods162. 
Further investigation by USPEX has produced a more 
complete phase diagram of the H–S system163.

The next record of high-Tc superconductivity has 
been predicted and already confirmed in metal hydrides. 
We mention predictions that CaH6 (reF.164), YH6 (reF.165), 
ThH10 (reF.166), AcH10 and AcH16 (reF.167) all have Tc > 200 K 
at pressures of 100 GPa or above. Even room-temperature 
superconductivity has been predicted in such systems, 
albeit at extreme pressures. According to a recent survey 
of rare-earth hydrides at high pressures168, structures of 
the stable H-rich clathrates feature H24, H29 and H32 cages 
with weak covalent bonding between hydrogen atoms 
and rare-earth atoms occupying the centres of the cages. 
Among these, sodalite-type YH10 (with H32 cages) was 
predicted to be a room-temperature superconductor 
with an estimated Tc of up to 303 K at 400 GPa, as derived 
from the Eliashberg equation. Independent work10 pre-
dicted the same material, YH10, and isostructural LaH10 
as room-temperature superconductors, with Tc values 
of 305–326 K at 250 GPa and 274–286 K at 210 GPa, 
respectively. LaH10 has already been synthesized169, and 
there are two experimental reports of a record-breaking 
Tc of 250–260 K (reFs11,12). Systematizing numerous pre-
dictions of Tc values for metal hydrides, a strong rela-
tionship between Tc and the position of the metal in the 
periodic table has been observed (Fig. 4): maximum Tc 
values correspond to hydrides of metals with low-lying 
empty orbitals (such as d0 elements like Ca, La, Ac and 
TH or d1 elements like Sc and Y)167. Orbital populations 
for such elements are very sensitive to the local atomic 
environment, which can lead to strong electron–phonon 
coupling. This simple principle can guide further 
searches for high-Tc superconductors.

Electrides. Electrides are a class of unconventional 
materials with a strong accumulation of valence electron 
density in void spaces, playing the role of anions. These 
interstitial electrons, not belonging to any particular atom 
or bond, correspond to states close to the Fermi level, 
and because they are so weakly bound, a dramatically 
reduced work function can be expected. This makes 
them interesting for applications such as the splitting of 
carbon dioxide at room temperature and the synthesis  
of ammonia from atmospheric nitrogen under mild 
conditions170. Although organic electrides were discov-
ered first171,172, more recently, interest has shifted to inor-
ganic materials owing to their potentially higher thermal 
and chemical stability. The first electride stable at room 
temperature was achieved experimentally by remov-
ing one oxygen atom per formula unit of the precursor 

compound, cement-phase mayenite 12CaO·7Al2O3 
(reF.173). Now, computational searches have begun to take 
the lead. The predicted and then synthesized transparent 
high-pressure form of sodium174 and the novel helium 
compound Na2He (reF.31), as well as some other predicted 
high-pressure phases175–177, are electrides. The band nar-
rowing that accompanies electride formation has also 
been predicted to promote a magnetic state in dense 
potassium175. Initially driven by structural analogies, a 
number of layered electrides, including alkaline earth 
nitrides (Sr, Ba)2N and transition-metal or rare-earth 
carbides (Y, Tb, Dy, Ho)2C, isostructural to the experi-
mentally known electride Ca2N, were predicted using 
substitutional approaches178. CSP has been applied to 
search for new electrides of A2B and AB stoichiometries 
on the basis of either energy179 or electronic localization180. 
However, such searches must consider possible compet-
ing phases with different stoichiometries181. Indeed, a 
variable-composition search found two new stable elec-
trides of composition Sr8P5 and Sr5P3 (as opposed to the 
earlier179 proposal of Sr2P) as the ground state at ambient 
conditions, and Sr5P3 was  confirmed by experiment181.

Organic materials. The fields of inorganic and organic 
CSP are beginning to converge182–185. Computational lim-
itations usually make it impractical to predict structures 
of organic crystals entirely from first principles, as they 
often contain hundreds of atoms in the unit cell. The most 
advanced strategy involves two stages: first, high-level 
interatomic force fields are employed for a first stage of 
structural optimization and energy evaluation and then 
more accurate (free) energy evaluation is used for the 
short list of candidates at the DFT or post-DFT levels. In 
practice, structure prediction could be simplified further 
on the basis of the observation that most organic crystals 
have either one or a fraction of a molecule in the asym-
metric unit (Zʹ ≤ 1) and in one of a few space groups such 
as P21/c, P-1, P212121, P21, C2/c and Pbca183. A strategy for 
sampling crystal structures in a reduced configuration 
space (with only a certain number of space groups and 
small Zʹ) is powerful for solving crystal structures of mol-
ecules in real-life settings, as demonstrated in previous 
blind tests of organic CSP organized by the Cambridge 
Crystallographic Data Centre184. As a similar example, 
glycine, the simplest amino acid, is known to have six 
polymorphs; the structure of the short-lived metastable 
ζ-phase could not be solved for more than a decade and 
was eventually  determined via evolutionary CSP186.

A computational screening of the pharmaceuti-
cal compound dalcetrapib with ten torsional degrees 
of freedom led to the discovery of a new form that 
was successfully synthesized under high pressure187. 
However, the assumption that Z ≤ 1 may be too restric-
tive, especially if metastable polymorphs are of interest, 
as reported in recent works188–192. Coumarin, a rather 
simple molecule, turns out to have five polymorphs, 
one with three molecules in the asymmetric unit190. The 
structures of the four new coumarin polymorphs were 
determined computationally and confirmed experimen-
tally190. Polymorphism is an emerging design strategy for 
organic functional materials, and structure determina-
tion for metastable polymorphs might gain impetus in 
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the near future. CSP has spread to organic semiconduc-
tors, a special class of organic materials with delocalized 
molecular orbitals in which charge carriers are mobile 
owing to extended π-conjugation. Organic semiconduc-
tors are of considerable interest because they promise 
fully flexible devices for large-area displays, solid-state 
lighting and solar cells. Great efforts have been devoted 
to improving their mobility and stability. In a computa-
tional screening, searching for new compounds deriv-
able from the existing molecules, researchers found a 
new compound with a significantly improved mobility 
(12.3–16.0 cm2 V−1 s−1, whereas mobility in other organic 
materials rarely exceeds 10 cm2 V−1 s−1) with respect to 
the parent molecules193. With the advances in both com-
putational power and CSP methodology, systematic CSP 
studies of energy-structure-function maps for small 
hypothetical molecules are now possible194–196.

A very interesting adaptation of the ideas of evolution 
was employed to search for porous organic materials 
with desired shape and size of pores197. The research-
ers started with a library of known self-assembling 

monomers and a set of simple framework topologies and 
by applying crossover and conservative mutations to the 
fittest trial solutions obtained an efficient evolutionary 
optimizer. They were able to recover experimentally 
known structures and predict a number of monomers 
that should self-assemble to form porous materials with 
very large (16 Å) pores. This work shows how to explore 
the space of synthesizable organic compounds to predict 
materials with desired properties.

Photovoltaic materials. Converting solar energy 
directly into electricity efficiently remains an important 
long-term goal. Several classes of photovoltaic material 
are being actively investigated, including single-crystal, 
amorphous and polycrystalline silicon, III–V com-
pounds, thin-film chalcogenides and organic photovol-
taics. Silicon is currently the leading material in the solar 
cell industry. However, the common cubic diamond 
form of silicon has an indirect bandgap of 1.17 eV and 
a minimum direct gap of 3.4 eV, which hinders efficient 
absorption of solar radiation. There have been intense 
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efforts to search for materials to replace silicon82. An 
inverse band structure approach for predicting met-
astable silicon phases was used to find a cubic form 
with a quasi-direct gap of 1.55 eV. Several more stable 
candidates were proposed using different structure pre-
diction techniques and are awaiting experimental valida-
tion198–200. An open-framework allotrope of silicon with 
a direct bandgap was recently realized experimentally 
using a two-step synthesis201. Furthermore, a low-energy 
tetragonal T32 structure of silicon with a quasi-direct 
bandgap of 1.28 eV was predicted to be synthesizable by 
decompressing the high-pressure Si-II allotrope on the 
basis of a newly developed evolutionary metadynamics 
technique202. Simultaneously, joint theoretical and exper-
imental work203 found experimental evidence for T32-Si. 
Practical applications of T32-Si will be likely if it can be 
obtained in large quantities.

Conclusions and perspectives
The many examples of successful first-principles struc-
ture predictions in the past decade make it clear that 
these techniques have become central to the study of 
materials structures and are beginning to emerge as an 
essential tool in materials discovery (see reF.3 and, for a 
more personal perspective, reF.185). The computational 
tools for such work are widely available and are starting 
to be used directly by experimental groups to design and 
interpret their experiments.

The approaches discussed in this Review comple-
ment data mining, and fruitful combinations of the two 
are possible. The simplest idea is to use known structure 
types to create a starting population of crystal structures 
for an evolutionary search204. A more general approach205 
is to start with ideal nets (which are obtained from actual 
crystal structures by abstraction: disregarding differ-
ences between chemical species, removing 1-coordinate 
and 2-coordinate sites and maximizing symmetry); 
the 2,500 most common ideal nets describe >70% of 
all known inorganic structures. De-abstracting ideal 
nets using group–subgroup relations in a way similar 
to Bärnighausen trees can generate most of the known 
inorganic structures and an infinite number of reason-
able new structures. The use of this topological struc-
ture generator for creating the initial population was 
shown205 to significantly (in available tests, by a factor 
of ~3) accelerate evolutionary structure prediction. 
Global optimization is capable of discovering entirely 
new crystal structures and compounds, including those 
that cannot be related to the initial set of ideal nets.  
In many cases, such newly predicted compounds have 
subsequently been confirmed by experiments and can 
themselves be fed into databases. Knowing about the 
existence of such hidden ground states is important for 
understanding fundamental chemistry and may be of 
technological interest if such states can be prepared.

Structure prediction faces several challenges, includ-
ing the difficulty of handling large systems, disorder 
and temperature. There are promising developments 
that can address each of these, such as building com-
plex structural hierarchies206, considering ensembles 
of structures207 and using efficient and accurate tech-
niques for handling vibrations and temperature208,209. 

The quality of the predictions obtained using the various 
electronic structure methods is limited by the available 
computational resources, insights into the chemistry of 
the system of interest and the skill of the person work-
ing on the computation. We expect that the need to 
describe increasingly complex materials, such as mate-
rials with strong electron–electron or electron–phonon 
 interactions and magnetism, will become more and 
more important.

Whereas pressure is an easy thermodynamic param-
eter, temperature is not: its proper account requires sam-
pling of typically 103–107 configurations for each phase, 
making calculations of the free energy computationally 
expensive. Fortunately, the number C of local minima 
of the free energy rapidly decreases with temperature T, 
possibly by exponential law:







C C exp αT T

T
= *−

*
(2)0

where C0 is the number of local minima at 0 K, α is a 
constant, and T* is the characteristic temperature (higher 
than the melting temperature) at which only one free 
energy minimum exists185. The meaning of equation 2 is 
that as temperature increases, many neighbouring min-
ima of the potential energy merge into one broad free 
energy minimum. The most accurate (fully incorporat-
ing anharmonic effects) way to compute the vibrational 
free energy and entropy is molecular dynamics with ther-
modynamic integration210. To study configurational dis-
order at finite temperatures (for example, in alloys), one 
can use Monte Carlo simulations with energies evalu-
ated using a cluster expansion effective Hamiltonian211,212; 
this approach is traditionally used for modelling order– 
disorder phenomena when the underlying structure is 
known. Although the need for extensive sampling and the 
variety of physical causes of the entropy greatly compli-
cate finite-temperature structure prediction, equation 2  
makes us think that progress can be made soon.

Another area in which we expect rapid progress is 
the understanding and prediction of metastability. In 
principle, an infinite number of low-energy metastable 
crystal structures can be predicted, but only a handful 
(if any) are synthesizable. Selection rules for synthesiz-
able polymorphs are currently unknown. Sun’s hypoth-
esis29 reduces metastability to thermodynamic stability 
at some conditions, and this gives a practical recipe to 
judge about possible synthesizability. The problem can 
also be approached from a kinetics viewpoint, assum-
ing that to be synthesizable a metastable phase should 
be easy to assemble from stable building blocks, such as 
magic nanoclusters86,89.

The search for materials with optimal properties has 
so far focused on physical properties, which describe 
a particular state and often are response functions. 
Chemical properties are more difficult, as they describe 
not a single state but a process of changing the state, 
and their calculation requires extensive and expensive 
sampling. More accurate reactive force fields (including 
machine learning force fields), the development of more 
efficient and automatic sampling methods and growing 
computing power will allow progress in this area.
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We are witnessing not only an avalanche develop-
ment of new ideas and methods; new types of com-
puting resources are also becoming available. Many ab 
initio codes are already ported to graphics processing 
units, and in some cases, this offers big advantages. 
Virtual machine technology enables almost any archi-
tecture to be used; for example, Windows PCs or 
even cell phones have been used to run such codes 

(normally in Linux)213. This allows distributed com-
puting to be used for high-throughput materials dis-
covery214. One day, perhaps quantum computers may 
also become practically applicable to both the opti-
mization problem and computation of the energies 
and properties215.
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