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ABSTRACT

In this work, we present a numerical implementation to compute the atom-centered descriptors introduced by Bartok et al. [Phys. Rev. B
87, 184115 (2013)] based on the harmonic analysis of the atomic neighbor density function. Specifically, we focus on two types of
descriptors, the smooth SO(3) power spectrum with the explicit inclusion of a radial basis and the SO(4) bispectrum obtained through
mapping the radial component onto a polar angle of a four dimensional hypersphere. With these descriptors, various interatomic poten-
tials for binary Ni–Mo alloys are obtained based on linear and neural network regression models. Numerical experiments suggest that
both descriptors produce similar results in terms of accuracy. For linear regression, the smooth SO(3) power spectrum is superior to the
SO(4) bispectrum when a large band limit is used. In neural network regression, better accuracy can be achieved with even less number
of expansion components for both descriptors. As such, we demonstrate that spectral neural network potentials are feasible choices for
large scale atomistic simulations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013208

I. INTRODUCTION

The development of accurate and efficient interatomic poten-
tials is a central issue critical in many areas of modern chemical
physics. Although ab initio methods such as the Kohn–Sham density
functional theory (DFT)1 are accurate and transferable, they are also
costly and, therefore, limited to applications to systems consisting of
only a few thousand atoms. On the other hand, empirical force fields
are able to handle systems of a much larger scale, although accuracy
is generally problematic. As a consequence, there has been a substan-
tial effort in the last decade to develop efficient and accurate inter-
atomic potentials using machine learning.2

The development of machine learning interatomic potentials
(MLIAPs) has been primarily focused on feature engineering, i.e., a
numerical descriptor used to represent the local chemical environ-
ment for each atomic structure. A representation of a chemical
environment should be real-valued, unique, invariant to rotation of
the system, translation of the system, and permutation of homonu-
clear atoms.2,3 Several representations satisfying these conditions
are widely used in fitting MLIAPs, examples of which are smooth
overlap of atomic positions (SOAPs),3 atom-centered symmetry

functions (ACSFs),4 moment tensor potentials (MTPs),5 and spec-
tral neighbor analysis potential (SNAP).6 Potentials are constructed
from these representations through machine learning on ab initio
data using regression methods such as generalized linear regression,
artificial neural networks, and Gaussian process regression. Notable
potentials include the SNAP method, which is constructed from
the SO(4) bispectrum components and fit using either a linear or
quadratic regression,6,7 Gaussian approximation potentials (GAPs)
constructed using SOAP with Gaussian process regression,8 and
high-dimensional neural network (NN) potentials constructed
using atom-centered symmetry functions with an artificial neural
network.9 For a comprehensive review on descriptor construction
and machine learning, please refer to recent literature studies.10–13

Recently, we demonstrated that neural network potentials
(NNPs) constructed using the SO(4) bispectrum components as
the descriptor can achieve good transferability on a rather diverse
set of atomic configurations obtained from randomly generated
crystalline silicon structures.14 In this work, we aim to extend the
capability of the NNPs based on the SO(4) bispectrum and smooth
SO(3) power spectrum to multicomponent systems as well as
provide a comprehensive study of the performance of the SO(4)

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 045113 (2020); doi: 10.1063/5.0013208 128, 045113-1

Published under license by AIP Publishing.

https://doi.org/10.1063/5.0013208
https://doi.org/10.1063/5.0013208
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0013208
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0013208&domain=pdf&date_stamp=2020-07-28
http://orcid.org/0000-0001-8888-4979
http://orcid.org/0000-0002-5078-1074
http://orcid.org/0000-0002-9892-0344
mailto:qiang.zhu@unlv.edu
https://doi.org/10.1063/5.0013208
https://aip.scitation.org/journal/jap


bispectrum components and the smooth SO(3) power spectrum
components as descriptors.3,6,15 First, we will review some particular
representations of chemical environments related to the harmonic
analysis of the atomic neighbor density function, with emphasis
on the SO(3) power spectrum and SO(4) bispectrum components.
In particular, we introduce a different numerical method to compute
these descriptors. This is followed by a brief discussion on the regres-
sion methods used in this study. Finally, we apply our approach to a
binary-component system Ni–Mo. The code that is used in this
study is available on https://github.com/qzhu2017/PyXtal_FF.

II. CHEMICAL ENVIRONMENT REPRESENTATIONS

A representation of a chemical environment can be considered
as a quantitative measure of atomic correlation, or rather, an order
parameter, being invariant to translations and rotations of the system
as well as permutations of homonuclear atoms. First, notice that the
spatial distribution of atoms in a chemical environment, up to a
cutoff radius (rcut), can be represented by a sum of δ functions,

ρ(r) ¼
Xri�rcut

i

δ(r � ri): (1)

This is referred to as the atomic neighbor density function.3 The
distribution of atoms described by the atomic neighbor density func-
tion is not particularly useful by itself, a more useful description of
the chemical environment is the angular distribution of atoms in the
environment obtained through expanding ρ(r) as a series on the
2-sphere using spherical harmonics,

ρ(r) ¼
Xþ1

l¼0

Xþl

m¼�l

clmYlm(r̂),

where the expansion coefficients clm are given by

clm ¼ , Ylm(r̂)jρ(r) .¼
Xri�rcut

i

Ylm(r̂i): (2)

For simplicity, we use
P

lm to denote the double summation
over l and m from now on. Several representations have been con-
structed using these expansion coefficients. Steinhardt constructed
his bond order parameters using second and third order combina-
tions of the expansion coefficients [Eq. (2)] to quantify order in
liquids and glasses.16 More generally, Kondor constructed an
SO(3)-invariant kernel on the 2-sphere using the expansion coeffi-
cients of a function defined on the 2-sphere; this kernel provides a
method of calculating both the power spectrum and the bispectrum
of a function on the 2-sphere.15 The SO(3)-invariant power spec-
trum of Eq. (1) is constructed through taking the autocorrelation of
the sequence of expansion coefficients in Eq. (2),

pl ¼
Xþl

m¼�l

clmc
*
lm: (3)

Though pl from Eq. (3) satisfies the necessary conditions to rep-
resent a chemical environment, it does not carry sufficient

information to be useful due to the fact that the expansion coeffi-
cients in Eq. (2) would not carry any radial information. For better
application to MLIAPs, Bartok introduced two modifications3 as
follows.

A. Smooth SO(3) power spectrum with explicit radial
components

The first modification is to add radial information by expand-
ing ρ not only as a series on the 2-sphere but on a radial basis
simultaneously. In the second modification, to ensure a smooth
similarity kernel, Bartok3 also expanded Eq. (1) using Gaussians,

ρ0(r) ¼
Xri�rcut

i

exp(�αjr � rij2), (4)

Then, expanding Eq. (4) on the 2-sphere yields

ρ0(r) ¼
X
ri�rcut

e�α(r2þr2i ) e2αr�ri

¼
X
ri�rcut

X
lm

4π e�α(r2þr2i )Il(2αrri)Y
*
lm(r̂i)Ylm(r̂),

where Il is a modified spherical Bessel function of the first kind.
The second equation is derived through a spherical harmonic
transform of e2αr�ri .

Radial information can be explicitly added to the representa-
tion. A convenient radial basis for this purpose proposed by Bartok
consists of cubic and higher order polynomials,3 gn(r), orthonor-
malized on the interval (0, rcut), while also vanishing at rcut,

fk(r) ¼ (rcut � r)kþ2=Nk,

where

Nk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðrcut
0

r2(rcut � r)2(kþ2) dr

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r(2kþ7)
cut

(2kþ 5)(2kþ 6)(2kþ 7)

s
:

Then, orthonormalizing linear combinations of fk from f1
up to fnmax,

gn(r) ¼
Xnmax

k¼1

Wnkfk(r), (5)

where W is constructed from the overlap matrix S by the relation
W ¼ S�1=2. The overlap matrix is given by the inner product3

Spq ¼
ðrcut
0

r2fp(r)fq(r) dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2pþ 5)(2pþ 6)(2pþ 7)(2qþ 5)(2qþ 6)(2qþ 7)

p
(5þ pþ q)(6þ pþ q)(7þ pþ q)

: (6)
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In their original work,3 Bartok et al. omitted the r2 term in
the integrand of Nk and Spq. We included this term to explicitly
orthonormalize the radial basis in the spherical polar coordinate
system.

Then, expanding ρ0(r) on the 2-sphere and radial
basis g(r) in Eq. (5), the new expansion coefficients are given by
Ref. 3 as

cnlm ¼ , gn(r)Ylm(r̂)jρ0(r) .

¼ 4π
Xri�rcut

i

e�αr2i Y*
lm(r̂i)

ðrcut
0

r2gn(r) e
�αr2 Il(2αrri) dr: (7)

The power spectrum components then follow similarly
to Eq. (3),

pn1n2 l ¼
Xþl

m¼�l

cn1 lmc
*
n2 lm: (8)

Note that Bartok further constructed the SOAP kernel to
measure the similarity between two chemical environments for
Gaussian Process Regression.3 For our purpose, we do not utilize
the SOAP kernel itself but use the smooth SO(3) power spectrum
as a descriptor for MLIAPs.

B. SO(4) bispectrum components

An alternative approach to include radial information is
to map the atomic neighbor density function within a
cutoff radius rcut onto the surface of the four dimensional hyper-
sphere (3-sphere) with a radius of r0 based on the following rela-
tions:3,6

s1 ¼ r0 cosω,

s2 ¼ r0 sinω cos θ,

s3 ¼ r0 sinω sin θ cosf,

s4 ¼ r0 sinω sin θ sinf,

where the polar angles are defined by

θ ¼ arccos
z
r

� �
,

f ¼ arctan
y
x

� �
,

ω ¼ πr
r0

:

(9)

Then, to ensure that the contribution from atoms at r ¼ rcut
smoothly goes to zero, it is necessary to augment the atomic neigh-
bor density function [Eq. (1)] with a cutoff function,6 while also
including the center atom to avoid unphysical invariance with
respect to ω,3

ρ(r) ¼ δ(r)þ
X
i

fcut(r)δ(r � ri), (10)

where the cutoff function is defined as6

fcut(r) ¼
1
2 cos πr

rcut

� �
þ 1

h i
, r � rcut,

0, r . rcut:

(
(11)

To ensure that the mapping produces, a one-to-one func-
tion defined on the 3-sphere, r0 has to be no smaller than rcut.
For convenience, we simply choose r0 ¼ rcut to map the atomic
neighbor density function onto the entire 3-sphere.

Now, the atomic neighbor density function mapped onto
the 3-sphere by Eq. (9) can be represented in an expansion of
Wigner-D matrix elements in the angle-axis representation, where
2ω is the rotation angle and θ, f define the axis,

ρ(r) ¼
Xþ1

j¼0

Xþj

m0 ,m¼�j

c jm0 ,mD
j
m0 ,m 2ω; θ, fð Þ:

The Wigner-D matrix elements are mutually orthogonal over
the double volume of SO(3) and conveniently the area measure of
the 3-sphere corresponds to exactly that (in the angle-axis repre-
sentation).17 Therefore, the expansion coefficients are obtained by
the inner product3

c jm0 ,m ¼ , Dj
m0 ,mjρ .

¼
ðπ
0
dω sin2 ω

ðπ
0
dθ sin θ

ð2π
0

dfD*j
m0 ,m 2ω; θ, fð Þρ(r)

¼ D*j
m0 ,m(0)þ

X
i

fcut(ri)D
*j
m0 ,m(ri): (12)

To obtain the bispectrum components, the triple-correlation
of the expansion coefficients is used.15 The result of which is
shown as follows:

B j1,j2,j ¼
Xþj

m0 ,m¼�j

c*jm0 ,m

Xþj1

m0
1,m1¼�j1

c j1m0
1,m1

Xþj2

m0
2,m2¼�j2

c j2m0
2,m2

C jj1 j2
mm1m2

C jj1 j2
m0m0

1m
0
2
,

(13)

where C is a Clebsch–Gordan17 coefficient.

III. NUMERICAL IMPLEMENTATION

To fit a MLIAP, both the representation and its gradient are
needed. The SO(4) bispectrum components, the smooth SO(3)
power spectrum components, and their gradients are imple-
mented in our in-house software package PyXtal-FF. Although
most of the calculations are straightforward as described Sec. II,
we will discuss the necessary details where the calculations are
nontrivial.

A. Bispectrum

For the SO(4) bispectrum components, we need to
calculate the Wigner-D matrices for each neighbor. Here, we use a
polynomial form of the Wigner-D matrix elements suggested
by Boyle,18
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Dj
m0 ,m ¼ (�1)(jþm)R2m

b δ�m0 ,m, jRaj , 10�15,

Dj
m0 ,m ¼ R2m

a δm0 ,m, jRbj , 10�15,

Dj
m0 ,m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(jþm)!(j�m)!
(jþm0)!(j�m0)!

q
jRaj2j�2mRm0þm

a R�m0þm
b �P

k
jþm0
k

� �
j�m0
j�m�k

� �
� jR2

bj
jR2

a j
� �k

, jRaj � jRbj,

Dj
m0 ,m ¼ (�1) j�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(jþm)!(j�m)!
(jþm0)!(j�m0)!

q
Rm0þm
a Rm�m0

b jRbj2j�2m �P
k

jþm0
j�m�k

� �
j�m0
k

� �
� jR2

a j
jR2

bj
� �k

, jRaj , jRbj,

8>>>>>>><
>>>>>>>:

(14)

where Ra and Rb are the Cayley–Klein parameters representing
the rotation. In the angle-axis representation of rotation,
the Cayley–Klein parameters representing a rotation about
an axis defined by r ¼ (x, y, z) through an angle ω can be
written as

Ra ¼ cos(ω=2)þ i
sin(ω=2)

r
z,

Rb ¼ sin(ω=2)
r

y þ ixð Þ:
(15)

These polynomials are finite and the coefficients of each term
are known. Different from previous works3,6 based on a recursive
scheme as discussed in the Appendix, we evaluate the Wigner-D
matrix elements using Horner’s method for the terms in the sum-
mation, which allows evaluation of a polynomial of degree n with
only n multiplications and n additions,

P(x) ¼ a0 þ a1x þ a2x
2 þ � � � þ anx

n

¼ a0 þ x(a1 þ x(a2 þ � � � þ x(an�1 þ xan))): (16)

Using Horner’s method is also convenient for the simultane-
ous computation of the gradient. To obtain the gradient with
respect to Cartesian coordinates, the chain rule is applied through
the Cayley–Klein parameters and their conjugates.

In addition, we make use of the symmetries of the SO(4) bis-
pectrum components discovered by Thompson,6

B j1j2 j

2jþ 1
¼ B jj2 j1

2j1 þ 1
¼ B j1jj2

2j2 þ 1
: (17)

These symmetries reduce the number of necessary bispectrum
components to compute to only the unique components, which
also greatly reduces the complexity of the gradient calculation.
For brevity, we denote the two inner sums of the bispectrum com-
ponent calculation as Zm,m0

j1,j2,j,
6

Xj1
m1,m0

1¼�j1

Xj2
m2,m0

2¼�j2

c j1m0
1,m1

c j2m0
2,m2

C jj1 j2
mm1m2

C jj1 j2
m0m0

1m
0
2
: (18)

So that, when utilizing the symmetries in Eq. (17), the gradi-
ent of the bispectrum components with respect to an atom i can be

written as6

∇iB
(i)
j1,j2,j ¼

Xj

m,m0¼�j

∇i c jm0 ,m

� �*
Zm,m0
j1,j2,j

þ 2jþ 1
2j1 þ 1

Xj1
m1,m0

1¼�j1

∇i c j1m0
1,m1

� �*
Z
m1,m0

1
j,j2,j1

þ 2jþ 1
2j2 þ 1

Xj2
m2,m0

2¼�j2

∇i c j2m0
2,m2

� �*
Z
m2,m0

2
j1,j,j2 , (19)

where the gradient of the inner product with respect to one
atom is

∇ic
j
m0 ,m ¼ ∇i fcut(ri)D

*j
m0 ,m(ri)

� �
: (20)

B. Smooth SO(3) power spectrum

In calculating the smooth SO(3) power spectrum, three main
challenges exist. First, the calculation of the spherical harmonics,
and second the radial inner product in Eq. (7), and third the gra-
dient of the expansion coefficients in Eq. (7). To start, the spheri-
cal harmonics can be considered as a subset of the Wigner-D
matrices in the z–y–z Euler-angle representation, where the
spherical harmonic vector Yl is a row vector of the corresponding
D-matrix Dl with some additional scalar factors as given in the
equation below17

Ylm θ, fð Þ ¼ (�1)m
ffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1
4π

r
Dl
0,�m χ, θ, fð Þ,

where the Wigner-D matrices are in the z–y–z Euler-angle repre-
sentation and χ is arbitrary, thus, without loss of generality, we
choose χ ¼ 0.

The z–y–z Euler-angle representation represents a rotation
about the original z axis through an angle α, then a rotation about
the new y axis through an angle β, and then a rotation about the
new z axis through an angle γ, which we can parameterize through
composing rotations using the Cayley–Klein parameters in the
angle-axis representation. For the case of calculating spherical har-
monics and choosing χ ¼ 0, we have a rotation about the original y
axis through an angle θ then a rotation about the new z axis through
an angle f. We represent each of these rotations individually by the
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Cayley–Klein parameters in the angle-axis representation

Raθ ¼ cos
θ

2
,

Rbθ ¼ sin
θ

2
,

Raf ¼ cos
f

2
þ i sin

f

2
,

Rbf ¼ 0:

To make sense of how to compose rotations represented by
the Cayley–Klein parameters, it is worthwhile to note that the
Cayley–Klein parameters are the matrix elements of the SU(2)
representation of rotation. So that the rotation (denoted by R̂) can be
represented as

R̂ ¼ Ra Rb

�R*
b R*

a

� �
:

Then, when composing rotations

R̂ ¼ R̂2R̂1,

where R̂1, R̂2 are SU(2) matrices that represent arbitrary rotations.
Performing the matrix multiplication, we obtain the composition
rule for rotations represented by the Cayley–Klein parameters,

Ra ¼ Ra2Ra1 � Rb2R*
b1,

Rb ¼ Ra2Rb1 þ Rb2R*
a1:

(21)

Then, for the case of spherical harmonics, the composition rule
reduces to

Ra ¼ RafRaθ ¼ cos
f

2
þ i sin

f

2

� �
cos

θ

2
,

Rb ¼ RafRbθ ¼ cos
f

2
þ i sin

f

2

� �
sin

θ

2
: (22)

Finally, using the composition rule, we can then calculate the spheri-
cal harmonics using their relationship to the Wigner-D matrices,

Ylm Ra, Rbð Þ ¼ (� 1)m
ffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1
4π

r
Dl
0,�m(Ra, Rb): (23)

The radial inner product
Ð rcut
0 r2gn(r) e�αr2 Il(2αrri)dr in Eq. (7)

cannot be solved analytically, so we employ numerical integration
for this purpose. The Chebyshev–Gauss quadrature is used so that
the quadrature nodes for the interval (0, rcut) never include r ¼ 0
for any N number of nodes in the quadrature; the Chebyshev–
Gauss quadrature nodes for the interval (0, rcut) are given by

xi ¼ rcut
2

cos
2i� 1
2N

π

� �
þ 1

� �
: (24)

Avoiding the removable singularity at r ¼ 0 due to I allows
for the use of the following recursion relation to compute I at each

of the nodes:

I0(x) ¼ sinh (x)
x ,

I1(x) ¼ x cosh (x)�sinh (x)
x2 ,

..

.

In(x) ¼ In�2(x)� 2n�1
x In�1(x):

8>>>><
>>>>:

(25)

The gradient of the smooth SO(3) power spectrum compo-
nents then follows:

∇ipnn0 l ¼
Xþl

m¼�l

c*n0 lm∇icnlm þ cnlm∇ic
*
n0 lm

	 

, (26)

where the gradient of the expansion coefficients is obtained through
applying the product rule on Eq. (7) and then differentiating under
the integral sign (as ri is independent of r ).

∇icnlm ¼ 4π∇i e�αr2i
� �

Y*
lm(r̂i)

ðrcut
0

r2gn(r) e
�αr2 Il(2αrri) dr

þ 4π e�αr2i ∇i Y
*
lm(r̂i)

	 
 ðrcut
0

r2gn(r) e
�αr2 Il(2αrri) dr

þ 4π e�αr2i Y*
lm(r̂i)∇i

ðrcut
0

r2gn(r) e
�αr2 Il(2αrri) dr

� �
, (27)

∇i e�αr2i
� �

¼ �2αri e
�αr2i r̂i,

∇i

ðrcut
0

r2gn(r) e
�αr2 Il(2αrri)dr

� �
¼ 2α

ðrcut
0

r3gn(r) e
�αr2 I0l (2αrri)drr̂i:

We again evaluate the radial integral using the Chebyshev–Gauss
quadrature and use the following recursion relation for the evaluation
of the first derivative of the modified spherical Bessel function:

I0n(x) ¼
1

2nþ 1
[nIn�1(x)þ (nþ 1)Inþ1(x)]:

Computing the gradient of the spherical harmonics is not as
trivial as computing the gradient of the Wigner-D functions due to
the singularities that exist at the north and south poles of the
2-sphere in Cartesian and spherical polar coordinates. Here, we
remove those singularities by taking the gradient with respect
to the covariant spherical coordinates. The covariant spherical
coordinates are related to Cartesian coordinates by the following
relations:17

xþ1 ¼ � 1ffiffiffi
2

p x þ iyð Þ,

x0 ¼ z,

x�1 ¼ 1ffiffiffi
2

p x � iyð Þ:
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Then, the gradient of the spherical harmonics with respect to the
covariant spherical coordinates is given by Ref. 17,

∇0Yl,m ¼ � l
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l þ 1)2 �m2

(2l þ 1)(2l þ 3)

s
� Ylþ1,m

� l þ 1
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 �m2

(2l � 1)(2l þ 1)

s
� Yl�1,m,

∇+1Yl,m ¼ � l
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l+mþ 1)(l+mþ 2)

2(2l þ 1)(2l þ 3)

s
� Ylþ1,m+1

� l þ 1
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l+m� 1)(l+m)
2(2l � 1)(2l þ 1)

s
� Yl�1,m+1 (28)

so that we can obtain the gradient with respect to Cartesian
coordinates by transforming the basis vectors back to Cartesian
unit vectors,17

ex ¼ 1ffiffiffi
2

p e�1 � eþ1ð Þ,

ey ¼ iffiffiffi
2

p e�1 þ eþ1ð Þ,

ez ¼ e0:

(29)

IV. INTERATOMIC POTENTIAL FITTING

In the present work, we adopted two fitting approaches: neural
networks and linear regressions. Both techniques predict collection
of atomic energies of a given structure: Etotal ¼ ΣiEi, where i loops
through all atoms in the structure. Each Ei ¼ f (Xi) is a function of
descriptors, Xi, representing the chemical environment around ri, a
set of atomic positions relative to the i-th center atom within a cutoff
radius (rcut). Since the atom-centered descriptors are derived analyti-
cally as shown in Sec. III, one can deduce explicit forms of the func-
tional to calculate forces and stress tensors.

A. Linear regression

Given the atom-centered descriptors (Xi), the functional
form for Ei can be expressed as a linear combination of the
descriptors,

Etotal ¼
XN
i¼1

Ei ¼ θ0 þ θ �
XN
i¼1

Xi, (30)

where θ0 and θ denote as the weight parameters and N is the total
atoms in the structure. The forces on each atom can be obtained by
computing the partial derivative of �@E=@ri through the chain
rule. Optionally, one can also include information on virial stress
in the training. In the context of linear regression, the objective is
then to minimize the overall errors with respect to energy, forces,
and stresses between the linear model and the training samples. To
prevent overfitting, a penalty function, usually the l1 or l2 norm of

θ can be added to the expression of loss function to serve as a regu-
larization term. Therefore, the final expression is

Δ ¼ �Emse þ β�Fmse þ γ�σmse þ λkWkn, (31)

where �Emse, �Fmse, �σmse denote the mean squared errors due to energy,
force, and virial stress; kWkn denotes the n-norm of the weight
vector; and β, γ, λ denote the coefficients to balance the emphasis of
training on force, stress, and penalty function. For the case of linear
regression, W is the concatenated vector of {θ0, θ}.

B. Neural network regression

In a NN regression, the atom-centered descriptors serve as the
inputs to the first layer of the neural network architecture. The NN
architecture also consists of an output layer and hidden layers,
where hidden layers reside in between input and output layers.
Within a layer, there are a collection of units or nodes called
neurons. The connectivity between these neurons in the layers
mimics synapses of neurons in a biological structure. The signals or
atom-centered descriptors permeate into the hidden layer to the
output neuron in the following general form:

Xl
ni ¼ alni (b

l�1
ni þ

XN
nj¼1

Wl�1,l
nj ,ni � Xl�1

nj ): (32)

The neuron Xl
ni at lth layer is established by the relationships

between the weight parameter Wl�1,l
nj ,ni , the bias parameter bl�1

ni , and
the neurons in the prior layers Xl�1

nj . Here, Wl�1,l
nj ,ni specifies the con-

nectedness of the nj neuron at (l � 1)th layer to the neuron ni at
lth layer. Then, an activation function alni is applied to the process
for the purpose of introducing non-linearity to the neurons. Xni at
the output layer is equivalent to atomic energy in the scope of this
study, in which the collection of these atomic energies is the total
energy of the system. The details about the NN architecture and its
application in interatomic potential fitting have been discussed in
many excellent review works recently.9,12,19

V. RESULTS AND DISCUSSION

In this section, we will first compare the computational costs
for each descriptor calculation as a function of the hyperpara-
meters. The accuracy of each representation in relation to both the
number of descriptors and its computational cost will be then
investigated by regressing on energies, forces, and stresses of a rep-
resentative binary alloy Ni3Mo=Ni4Mo system using linear regres-
sion. Last, we will introduce a more flexible NN regression model
to improve the accuracy of fitting on the extended Ni–Mo dataset
within a larger chemical space.

In parallel to force field fitting, generating a diverse training
dataset is also a challenging task. Recently, there is an increasing
trend for research groups to share their own data with the entire
MLIAP community. Thanks to this trend, we choose to examine
the dataset from a recent work by Li et al.,20 which includes 4019
atomic configurations for elemental Ni, Mo, Ni3Mo, Ni4Mo, and
doped Ni–Mo alloys. The training dataset consists of (1) undis-
torted ground state structures for Ni, Mo, Ni3Mo, and Ni4Mo, (2)

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 045113 (2020); doi: 10.1063/5.0013208 128, 045113-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


distorted structures obtained by applying strains of �10% to 10%
at 1% intervals to a bulk supercell, (3) surface structures of elemen-
tal structures, (4) snapshots from ab initio molecular dynamics
simulations of the bulk supercell at several temperatures, and (5)
doped alloy structures constructed by partial substitution of the
bulk fcc Ni with Mo and the bulk bcc Mo with Ni. In addition, we
also used the extra dataset on Mo from Ref. 21. For the computa-
tion of each descriptor below, we used a uniform cutoff distance
of 4.9 Å.

A. Computational cost comparison

We begin with evaluating the computational cost of the SO(4)
bispectrum components and the Smooth SO(3) power spectrum
components, which requires some measure of the cost of each
method. By far, the gradient is the most expensive part of the calcu-
lation, so we estimate the cost of each method by the accumulation
of the gradient for one neighbor. The cost function for each method
is evaluated by the asymptotic cost of accumulating the gradient plus
the cost of precomputing the expansion coefficients and their gradi-
ents for a given truncation. For the SO(4) bispectrum components,
the cost of precomputation is equivalent to the number of Wigner-D
matrix elements to evaluate,

P2jmax
j¼0 (jþ 1)2, where for the smooth

SO(3) power spectrum the cost of precomputation is equal to the
number of Wigner-D matrix elements to evaluate, (lmax þ 2)2, added
to the number of radial functions to evaluate for the quadrature
[Eq. (34)], to compute each integral, we use 10(nþ l þ 1) quadrature
nodes. In our implementation, the cost of evaluating the radial func-
tions is less than that of evaluating the D-functions, although for the
sake of simplicity of the cost model we treat these costs as equal,

cost ¼ costaccum þ costprecomputation: (33)

Therefore, we estimate the computational cost of each descriptor
as follows:

SO(4): j5max þ
X2jmax

j¼0

(jþ 1)2,

SO(3): n2maxl
2
max þ (lmax þ 2)2 þ

Xnmax

n¼1

Xlmax

l¼0

10(nþ l þ 1)

" #
: (34)

The cost of each descriptor is then compared with the number
of elements of that descriptor. The number of unique elements of
each descriptor are given by

NSO(4) ¼ (jmax þ 1)(jmax þ 2)(jmax þ 3=2)=3,

NSO(3) ¼ nmax(nmax þ 1)(lmax þ 1)=2: (35)

In Fig. 1, we plot the computational cost given by Eq. (34)
with respect to the number of descriptors [Eq. (35)] for both the
SO(4) bispectrum and SO(3) power spectrum. Clearly, we find that
in the low band limit (N � 30), the SO(4) bispectrum components
are much less costly than the smooth SO(3) power spectrum com-
ponents, where at higher band limits, including more terms in the
radial expansion of the smooth SO(3) power spectrum results in a

less costly computation in comparison to the SO(4) bispectrum
components.

B. Linear regressions on Ni4Mo and Ni3Mo

To evaluate the performance of these two descriptors, we first
choose a subset of data from the Ni–Mo dataset, which includes
642 atomic configurations only in Ni3Mo and Ni4Mo stoichiome-
tries. We then fit linear regressions to this data for each representa-
tion using a set of descriptors obtained through different
hyperparameters in Eq. (34), while varying the coefficients of
force’s contribution to the total loss function.

The results of these regressions are shown in Fig. 2. Clearly,
there is a general trend that both SO(3) power spectrum and SO(4)
bispectrum can continuously achieve better accuracy with the
inclusion of more components, although at high band limits that
increased accuracy becomes marginal. In addition, the results show
that high band limit fits vary less with respect to the change of
force coefficient, indicating a convergence of the regression.
However, a full convergence at high band limits results in incredi-
bly expensive calculations. In real applications, it is generally
advised to choose a smaller band limit. For the SO(4) bispectrum
components, holding the truncation of jmax ¼ 3 is a rather
common choice.2,6,20 A more detailed analysis regarding the cost of
computing the SO(4) bispectrum components with respect to jmax

can be found in Ref. 7. Therefore, we aim to for a better solution
through investigating the smooth SO(3) power spectrum.

Indeed, we find that the smooth SO(3) power spectrum com-
ponents converge more quickly to lower errors in comparison to
the SO(4) bispectrum components while also converging to a lower
error overall. For instance, using only 90 smooth SO(3) power spec-
trum components yields similar accuracy (2.14 meV/atom in
energy mean absolute error (MAE) and 0.06 eV/Åin force MAE)
to 204 bispectrum components (1.68 meV/atom in energy MAE

FIG. 1. The computational cost of the SO(4) bispectrum descriptor and the
smooth SO(3) power spectrum descriptor vs the total number of elements of
that descriptor. The smooth SO(3) power spectrum is also colored according to
the number of radial components in the expansion.
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and 0.07 eV/Å in force MAE), if we hold the force coefficient at
1�10�5. To further illustrate the performance of both descriptors
in terms of computational cost, we calculate both the 90 compo-
nent smooth SO(3) power spectrum and 204 component SO(4) bis-
pectrum for the ground state Ni3Mo structure with eight atoms in
the unit cell at a cutoff radius of 4.9 Å with the gradient; the
smooth SO(3) power spectrum component calculation is completed

0.56 s, whereas the SO(4) bispectrum component calculation is
completed in 3.97 s. Since our code is written in Python (using the
LLVM compiler through Numba22), we expect the run time will be
less if the code is rewritten in C++ or Fortran. These results suggest
that the smooth SO(3) power spectrum is a more efficient descrip-
tor in terms of both accuracy and computational cost in the
context of linear regression.

Although both descriptors yield satisfactory accuracy on the
Ni3Mo=Ni4Mo dataset, we found it hard to maintain the same
level of accuracy when extending the training dataset with other
stoichiometries (e.g., elemental Ni/Mo) for the regression. In prin-
ciple, one can improve the regression by tuning force and stress
coefficients, applying regularization, and adopting a nonuniform
weight scheme on each sample.7,20 However, a more automated
approach to dealing with large data is to employ a more flexible
regression model such as NN regression to be presented in
Subsection V C.

C. Neural network regressions on Ni–Mo alloys

When dealing with a large amount of data, linear regression
requires very fine-tuning of hyperparameters to achieve acceptable
accuracies. To achieve these accuracies, optimization schemes are
adopted to adjust hyperparameters such as descriptor size, specie
weights, cutoff radii, and nonuniform data weighting so that
obtaining an optimal fit requires many training cycles.7,20,21 NN
regression provides a more automated approach to achieve greater
accuracy on larger datasets without the need for high band limit
descriptors or heavy hyperparameter optimization. In this study,
we seek to use a small set of descriptors (30) to train a MLIAP on
the entire Ni–Mo dataset consisting of over 4000 structures to satis-
factory accuracy through a simple feed forward neural network
consisting of two hidden layers of 16 neurons each. For a fair com-
parison, we prepare two sets of descriptors (1) the bispectrum com-
ponents with jmax ¼ 3 and (2) the smooth SO(3) power spectrum
components with lmax ¼ 4 and nmax ¼ 3. To ensure that the results
can describe elastic deformation well, we also consider the virial
stresses for the elastic configurations in the training. Correspondingly,
we set β ¼ 3� 10�3, γ ¼ 1� 10�4, and λ ¼ 1� 10�8 for the evalu-
ation of the loss functions [Eq. (31)] in all subsequent NN runs.

Table I lists the training results in terms of energy and force
for all three models. In the previously reported linear SNAP
model,20 the overall fitting results are 22.5 meV/atom in energy

FIG. 2. Linear regressions of both the SO(4) and SO(3) representations with
varying numbers of components. The force coefficients used fall between 1�
10�6 and 1� 100 with most points falling between 1� 10�5 and 1� 10�4.

TABLE I. Comparison of the spectral neural networks models’ MAE values from different descriptors. For reference, the previous NiMo model trained from SNAP20 is also
included. Note that in the SNAP model,20 only 247 Mo structures were used for training. In our work, we replaced the elastic configuration data with the dataset from Ref. 21.
In the parenthesis, it gives the number of configurations for each group.

Mo Ni MoNi NiMo Ni3Mo Ni4Mo Overall
Properties Descriptor jmax lmax nmax Architecture (377) (414) (918) (1668) (321) (321) (4019)

Energy (meV/atom) SO(4)20 3 Linear Reg. 16.2 7.9 22.7 33.9 5.2 4.0 22.5
SO(4) 3 30-16-16-1 6.2 7.3 5.6 6.1 6.1 6.4 6.1
SO(3) 4 3 30-16-16-1 6.3 3.6 6.2 6.7 4.9 4.6 5.9

Force (eV/Å) SO(4)20 3 Linear Reg. 0.29 0.11 0.13 0.55 0.16 0.14 0.23
SO(4) 3 30-16-16-1 0.19 0.07 0.06 0.10 0.10 0.09 0.10
SO(3) 4 3 30-16-16-1 0.18 0.04 0.06 0.10 0.09 0.07 0.08
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MAE and 0.23 eV/Å. Clearly, both NN models are able to yield sig-
nificantly better results (6 meV/atom for energy and 0.08 eV/Å for
force) than the previous reported linear model. Notably, the linear
regression also reports drastically lower accuracy in both energy
and force for the MoNi=MoNi sets, suggesting that the elemental
Ni/Mo and Ni3Mo=Ni4Mo portions of the data were weighted
much higher in the regression. In particular, the 1668 NiMo set,
occupying the largest percentage of the data, has a energy MAE of
33.9 meV/atom and force MAE of 0.55 eV/Å. As such, the predict-
ability of linear SNAP model is likely to be limited in describing
the configurations in the vicinity of the MoNi=MoNi alloys. In

contrast, the neural network regressions do not need a special
weighting scheme. The models from both the SO(4) bispectrum
and SO(3) power spectrum yield not only lower energy and force
errors for the overall fitting. The energy/force errors for each group
are also more evenly distributed.

The elastic tensor is another important metric to check if the
trained MLIAPs are able to reproduce the fine details of the PES
on the representative basins. To ensure a satisfactory fitting to the
elastic properties, we also included training on the stress tensors for
the elastic configurations from the previous works.20,21 Table II
shows the predicted elastic properties from each model for the
ground state structures of BCC Mo, FCC Ni, Ni3Mo, and Ni4Mo.
In agreement with the previously reported linear SNAP model,20

the elastic data predicted by each MLIAP agree with the reported
DFT result within similar levels of accuracy across all four ground
state structures. In the previous work, it is likely that the authors
adjusted the weight for each group of structures in order to achieve
a better fit in the elastic properties at the expense of accuracy in
energy and force. However, these NN regressions can circumvent
this trade-off by using a more flexible expression in describing the
target properties (energy, force, stress tensor) in fitting. As such,
the NN models can yield greater accuracy with respect to energy
and force while maintaining accuracy in elastic properties all
without the need for heavy hyperparameter optimization.

Last, it is also of interest to compare the performance of
fitting between the SO(4) bispectrum and smooth SO(3) power
spectrum models. In Sec. V B, it is clear that SO(3) is superior to
SO(4) in the context of linear regression. However, this is no longer
the case for NN regression. With the same number of descriptors
(30), both NN models yield very similar levels of accuracy. In terms
of elastic properties prediction, the SO(4) model seems to be
slightly better than SO(3) though SO(3) generated a slightly lower
MAE value for stress tensors overall.23 From the point view of com-
putational cost, computing the 30 bispectrum components is less
expensive than computing the same number of power spectrum
components. Therefore, it is fair to conclude that two descriptors
are competitive for the application of NN regression.

VI. CONCLUSION

In summary, we present a numerical implementation of
computing the atom-centered descriptors derived from harmonic
analysis, which include the SO(4) bispectrum components and the
smooth SO(3) power spectrum. Using these descriptors to fit
machine learning interatomic potentials for a small set of Ni–Mo
stoichiometries within a narrow chemical composition space, we
found that both descriptors are able to yield satisfactory accuracy
within the framework of linear regression. However, the linear
regression is not easily extended to fit a more diverse dataset from
a larger chemical composition space and even then accuracy can
still be lacking without hyperparameter optimization such as
descriptor size, specie weights, cutoff radii, and nonuniform data
weighting. Hence, we demonstrate that neural networks regression
paired with the SO(4) bispectrum components or the smooth
SO(3) power spectrum components can provide a better trained
model without the need for large band limit descriptors or heavy
hyperparameter optimization. The validity of the trained models

TABLE II. Comparison of elastic properties predicted from several different Models.
B and G denote the empirical Voigt–Reuss–Hill average of bulk and shear moduli,
respectively. ν is the Poisson’s ratio.

SNAP20 SO(4) SO(3)
σ(MAE) (GPa) DFT N/A 0.295 0.289

Mo
c11 (GPa) 472 475 487 479
c12 (GPa) 158 163 153 168
c44 (GPa) 106 111 108 82
B (GPa) 263 267 265 271
G (GPa) 124 127 129 106
ν 0.30 0.29 0.29 0.33
Ni
c11 (GPa) 276 269 275 271
c12 (GPa) 159 150 162 150
c44 (GPa) 132 135 137 120
B (GPa) 198 190 199 188
G (GPa) 95 97 96 88
ν 0.29 0.28 0.29 0.30
Ni3Mo
c11 (GPa) 385 420 426 402
c22 (GPa) 402 360 354 382
c33 (GPa) 402 408 379 394
c12 (GPa) 166 197 159 159
c13 (GPa) 145 162 133 109
c23 (GPa) 131 145 208 173
c44 (GPa) 58 N/A 54 70
c55 (GPa) 66 N/A 68 52
c66 (GPa) 94 84 79 58
B (GPa) 230 243 240 229
G (GPa) 89 100 80 80
ν 0.33 0.32 0.35 0.34
Ni4Mo
c11 (GPa) 313 326 319 343
c33 (GPa) 300 283 294 293
c12 (GPa) 166 179 166 160
c13 (GPa) 186 164 199 193
c44 (GPa) 130 126 136 131
c66 (GPa) 106 N/A 102 113
B (GPa) 223 220 221 222
G (GPa) 91 95 96 102
ν 0.33 0.31 0.31 0.30
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are further supported by the accuracy of elastic property calcula-
tions. Last, the SO(3) power spectrum descriptor clearly exhibits
better agreement with the total energy than the SO(4) bispectrum
components, thus it is a better choice for linear regression.
However, when adopted to the neural networks regression, both
descriptors tend to yield the same level of accuracy. A further com-
parison of the performances of different types of descriptors will be
the subject of future studies.
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APPENDIX: ALTERNATIVE EXPRESSION TO COMPUTE D

We are aware that two previous works3,6 used a different
approach to compute the Wigner-D martices.3,6 To start, a different
set of Cayley–Klein parameters were used,

Ra ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2 cot2 (ω=2)

p r cot (ω=2)þ izð Þ,

Rb ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2 cot2 (ω=2)

p y þ ixð Þ, (A1)

which can be shown to be identical to Eq. (15). However, when
implemented numerically, there exists a singularity at ω ¼ 0 and
ω ¼ 2π, so we choose to implement Eq. (15) rather than treating
ω ¼ 0 as a separate case and omitting ω ¼ π altogether. Moreover,
they used a recursive scheme to compute the D matrices,

Dj
mm0 ¼

ffiffiffiffiffiffiffiffi
j�m
j�m0

q
R*
aD

j�1=2
mþ1=2,m0þ1=2�

ffiffiffiffiffiffiffiffi
jþm
j�m0

q
R*
bD

j�1=2
m�1=2,m0þ1=2, m0 = j,

Dj
mm0 ¼

ffiffiffiffiffiffiffiffi
j�m
jþm0

q
RbD

j�1=2
mþ1=2,m0�1=2þ

ffiffiffiffiffiffiffiffi
jþm
jþm0

q
RaD

j�1=2
m�1=2,m0�1=2, m0 =�j:

8><
>:

(A2)

Compared to the polynomial form Eq. (16), the recursive
form requires less floating point operations, in general, and is more
efficient in serial calculations. However, in parallel architectures, a
polynomial form of the D-matrices is advantageous as no single
term depends on another. During our implementation, we found
that using Numba’s automatic parallelization,22 we were able to
fuse all loops in the D-matrix calculation to achieve parallelization
more so than algorithm when compared to the recursive version.
This difference results in an improved scaling of the algorithm.
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