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ABSTRACT

In this article, we present a systematic study on developing machine learning force fields (MLFFs) for crystalline silicon. While the main-
stream approach of fitting a MLFF is to use a small and localized training set from molecular dynamics simulations, it is unlikely to cover
the global features of the potential energy surface. To remedy this issue, we used randomly generated symmetrical crystal structures to train
a more general Si-MLFF. Furthermore, we performed substantial benchmarks among different choices of material descriptors and regres-
sion techniques on two different sets of silicon data. Our results show that neural network potential fitting with bispectrum coefficients as
descriptors is a feasible method for obtaining accurate and transferable MLFFs.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0014677

. INTRODUCTION

Atomistic modeling methods such as molecular dynamics
(MD) or Monte Carlo (MC) play important roles in investigating
time-dependent physical and chemical processes. In these methods,
energy and forces need to be recalculated iteratively as the atomic
configuration evolves. Consequently, atomistic simulations crucially
depend on the accuracy of the underlying potential energy surface
(PES). Modern quantum mechanical modeling based on density
functional theory (DFT) can consistently generate accurate energetic
descriptions for many solid systems." However, MD simulations
based on DFT suffer from the highly demanding computational cost.
The simulations are only suitable to model a system with up to a
few thousands of atoms at tens of picoseconds. On the other hand,
the classical force field (FF) method is widely employed to simu-
late materials with millions of atoms at hundreds of nanoseconds.
This method has enabled many explorations that lead to revealing
interesting physical and chemical phenomena.” * However, the con-
struction of a reliable PES by the classical FF method remains prob-
lematic. In developing classical FF, a set of parameters are fitted to a
few DFT and/or experimental data to compute the potential energy
of a system, given an analytic functional form. Due to the constraints
on the functional form and the limitation of the training dataset, the
accuracy of classical FF is not dependable.

Meanwhile, in silico materials discovery requires an accurate
yet efficient energy model to screen materials’ properties in a high-
throughput manner. In the past decade, discoveries of new materials
have been highly driven by advanced structure prediction methods
such as crystal structure prediction (CSP)” and data mining.’ In both
cases, the DFT method is used to perform geometry relaxation and
energy evaluation. Despite the power of the current supercomputer,
the computational cost for DFT simulation remains a bottleneck to
many important and fascinating puzzles in materials science. Ide-
ally, an approach that preserves DFT accuracy without sacrificing
the computational cost is desirable.

To resolve the limitations described above, many efforts
have been devoted toward establishing the machine learning force
field (MLFF) method. Compared to the DFT method, the MLFF
approach demands far lower computational cost (2-4 orders of
magnitude lower) while retaining accuracy at the DFT level. The
power of the MLFF method is illustrated by many applications to
a range of materials.” '’ A large amount of DFT data (structures,
energy, forces, and stresses) are required to develop an accurate
MLEFF. The structures must be represented by appropriate descrip-
tors (high-dimensional real valued array) in order to identify the
similarities and/or dissimilarities in the atomic environments. In
MLEFF fitting, a variety of regression techniques are used to cor-
relate between the descriptor and energy/forces. Several machine
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learning techniques for developing MLFF had been successfully
implemented: linear/polynomial regression,'' '* Gaussian process
regression,'”'* and high-dimensional neural network potential
(NNP)."”"® A benchmark study of these machine learning methods
had been carried out for performance and cost inspections to many
elemental systems.'” Nevertheless, many of the published MLFFs
lack transferability/versatility, which is crucial in crystal structure
prediction.

In the past few years, many researchers have attempted to
improve transferability for many different systems.'””"” Two
approaches, including advanced sampling and structure prediction,
have recently become popular. One is to force ordinary MD simu-
lations to escape from the already explored equilibrium states,”*’
while the other attempts to identify the low energy configura-
tions by sampling many different basins mostly based on geometry
optimizations. A heterogeneous training dataset—diversity in struc-
tural types—enhances transferability across different types of struc-
tures, curing the extrapolation problem.”*”” Zeni et al.”* achieved
a good trade-off between transferability and overall accuracy by
applying Gaussian process regression with a diverse dataset (includ-
ing high temperature structures). Similarly, many physical prop-
erties were reproduced within 10% relative error to the DFT.”
Hajinazar et al. employed a structure prediction technique to gen-
erate more diverse datasets than the common, less diverse, dataset
generated with the MD-based approach.”’ In addition, it was pro-
posed that the generation of MLFFs could be performed in con-
junction with structure prediction processes. The active learning
approach in constructing MLFFs on-the-fly was employed auto-
matically to deal with extrapolation outside the training domain.
Then, the MLFFs replaced the DFT gradually for structural relax-
ations and energy evaluations with much lower computational cost.
The active learning technique had been successfully applied to
predict PES reconstructions of several challenging elemental sys-
tems’ """ and multi-component systems.‘w For instance, Deringer
et al.”' used Gaussian process regression combined with random
structure searching (RSS) algorithms to systematically construct an
interatomic potential for boron; Podryabinkin et al.”* employed the
evolutionary algorithm USPEX to build the machine-learning inter-
atomic potentials for several elemental allotropes; and similar ideas
were also applied to investigate the surface reconstructions™ and
nanoparticles.”

In this report, we will discuss about our attempts on developing
accurate and transferable MLFFs for elemental silicon as the proto-
typical system. Many silicon MLFFs had been developed using the
training datasets obtained by running MD simulations and selecting
known structural prototypes manually.'”'>'**>**~** These configu-
rations from MD trajectories tend to possess strong correlations with
the initial geometry. Hence, the resulting MLFFs can only describe
a few energy basins of the entire PES. We believe that there are
two main factors that can influence the transferability of the MLFF.
First, the training dataset generated with the high-throughput struc-
ture prediction method can enhance the transferability. Here, we
generate a diverse silicon dataset by using our in-house code, PyX-
tal”’—a Python package for random crystal structure generation.
The DFT-quality dataset spans a large space in the PES covering
many energy basins, and the DFT setting is provided in Sec. IT A.
Second, we enable a machine learning infrastructure that allows
Behler-Parrinello descriptors and bispectrum coefficient descriptors
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to be trained with generalized linear regression and neural networks.
The details of the descriptors and the regression techniques are avail-
able in Secs. I1 B and 11 C, respectively. Finally, we will systematically
construct the NNP with bispectrum coefficients as the descriptors in
Sec. 111

Il. COMPUTATIONAL METHODOLOGIES
A. Ab initio calculation

Ab initio calculations are necessary to provide the training
dataset for MLFF development. In this study, we employed PyXtal’
software to generate several thousands of structural configura-
tions. For each configuration, the total energy and forces were
calculated at the DFT level through the ASE package.”" ASE
provides interface to the Vienna Ab Initio Simulation Package
(VASP) code™ within projector augmented wave methodology®
to perform geometry relaxations. In our calculation, we used
the Perdew-Burke-Ernzerhof generalized gradient approximation
(PBE-GGA)”’ as the exchange-correlation functional with an energy
cutoff of 600 eV and a I'-centered KSPACING of 0.15.

B. Descriptors

Descriptors, as the unique numerical representations of atomic
structures, play an essential part in constructing MLFFs. It is cru-
cial for a descriptor to be able to distinguish the local environments
of atomic structures. The most common choice of representation by
atomic coordinates is convenient, but it poorly describes the struc-
tural environments. The Cartesian coordinates of a crystal structure
can change through translational or rotational operation, while the
energy remains invariant. Thus, physically meaningful descriptors
must be unaffected by these alterations to the structural environ-
ment, and any permutation of atoms should not change the descrip-
tors. Additionally, the descriptors must be continuously differen-
tiable within the domain of the local atomic environment. In the last
decade, the atom-centered descriptors, which probe the atomic envi-
ronment by their neighboring vectors, became popular because they
fit the criteria. The descriptors usually operate within a cutoff func-
tion to ensure that the descriptors smoothly vanish to zero at a given
cutoff radius, R.. A popular cutoff function choice is the so-called
cosine cutoff function. The function is expressed in the following:

1|:cos( T[Rij) + 1] Rii <R
fc(RiﬁRc) =42 R e > (1)
0 otherwise

where R;; is the distance between the center atom i and the neighbor
atom j.

Among the atom-centered descriptors, Behler-Parrinello
descriptors'’ and bispectrum coefficients” are widely used in the
materials modeling community. Their definitions will be discussed
briefly as follows.

1. Behler-Parrinello descriptors

Behler-Parrinello descriptors are used regularly to represent
the local atomic environments of crystal structures in NNP develop-
ment. Commonly used Behler-Parrinello descriptors are two-body
(G*) and three-body (GH symmetry functions,
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G’2 - Z ein(R[jiRs)zf;;(Rij), (2)
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Gl =23 37 (1 + Acos )"
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w o MRGHRLARL) Se(Ry) - fo(Rie) - fe (Ry). 3)

G* is mainly designed to capture the radial environment, while G*
is used for describing the angular part by including the three-body
ijk terms. R shifts the center of the Gaussian functions to a certain
radius, resulting in a spherical shell with the Gaussian width of #. {
controls the angular resolution, and A usually takes the value of +1
and -1 for inverting the cosine function. The cutoff function (f.)
is consistent with Eq. (1). There is a set of G and G; descriptors
specifying the center atom i in relation to the neighboring atoms j in
terms of radial and angular parts. For a real material system, this set
of parameters need to be optimized by a more extensive search.” *'

2. Bispectrum coefficients

Similar to Behler-Parrinello descriptors, the SO(4) bispectrum
can be used to represent the local atomic environments. It was first
introduced by Bartdk et al. for the training of machine learning FF
(MLFF) on the elemental systems of Group IVA."” A detailed study
of the SO(4) bispectrum as a descriptor along with several alterna-
tive implementations [SO(3) bispectrum, angular Fourier series, and
SOAP kernel] is available in Ref. 29. Later, Thompson et al. proposed
the spectral neighbor analysis (SNAP) method and demonstrated
that the SO(4) bispectrum could achieve satisfactory accuracy based
on the simple linear'' and quadratic regressions.”” Following the
original work, the expression of the SO(4) bispectrum is formed by
the expansion coefficients of 4D hyperspherical harmonics,

1

B = 3 (Gwm)”

m,m’=—I

h h
Wll,m; ==l mz)VHQ:*lz

.
I Clz , Lm,m (4)

X C / '
mymy Cmhmy” lmymh,my,my

Il
where H;>, |
my,my,m’ my g, m

on a 3-sphere. In application, it is the product of two ordinary

Clebsch-Gordan coefficients on a 2-sphere. cf’m . m, are the expan-
1,156,511

is analog to the Clebsch-Gordan coefficients

sion coefficients from the hyperspherical harmonic (Ufn,,m) func-
tions that are projected from the atomic neighborhood density
within a cutoff radius onto the surface of a four-dimensional sphere,

+oo  +l +1

p= Z Z Z CianU;{n’,m) (5)

1=0 m=—Im’'=-1

where the expansion coefficients are defined as

St = (Uneonlp). (©)

In this work, our implementation of the SO(4) bispectrum
or bispectrum descriptor is very similar to the SNAP method"'
that is implemented in the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) code.”” However, we introduce
another method to calculate the hyperspherical harmonics and
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their gradients.”” The benefit of this method is that it allows for
the removal of singularities at the north and south poles of the
3-sphere that exist in the traditional implementation. Furthermore,
we also include an option to normalize the expansion coefficients

from the hyperspherical harmonics, where the normalization factor

is —fol:l. The impacts of normalization on the MLFF training will be

discussed later in Sec. 111 C.

C. Machine learning force field fitting

The construction of the total energy (Ei) of a structure can
be obtained by the summation of atomic energy (E;) evaluated from
atom-centered descriptors, Xj,

all atoms

Etotal = Z Ez(Xz) (7)

The atomic energy contributions depend on the local structural
environment within a cutoff radius with respect to the center atom
i. Furthermore, an accurate representation of PES is also dependent
on the contributions of forces. The force that acted on atom j can be
expressed by the negative gradient of the energy with respect to its
atomic positions (r;),

_allatoms 8Ei(Xi) . aX;

F;= .
J Z 8Xi 81’1‘ (8)

The functional forms of E and F are fully dependent on the regres-

sion algorithm. Generalized linear regression and neural network
(NN) regression will be discussed in Secs. IT C 1 and IT C 2.

1. Generalized linear regression

Linear regression is the most fundamental approach in curve
fitting. In this context, each atomic energy is assumed to be lin-
early correlated with the descriptors. Thus, the total energy can be
expressed as follows:

N
Eiotal = Yo+ 7y ZXi) (9)
i=1
where yo and y are the weights presented in scalar and vector forms,
and N is the total number of atoms in a structure.

In general, the total energy can be described as a generalized
linear regression with extended polynomial terms. The following
equation is a version to the second-order (quadratic) expansion in
the Taylor series:

N N
1
Emtalzyow-in+EZX?~r~X,~, (10)
i=1 i=1

where A is the symmetric weight matrix (i.e., A2 = Az1) describing
the quadratic terms. From linear to quadratic regression, the size of
weight coefficients increases from N + 1 to (N + 1)(N + 2)/2. Indeed,
the energy can be further expanded to higher order. However, we
restrict it to the second-order expansion due to the drastic increase
in the size of weight coefficients.

Correspondingly, the force of an atom j can be expressed in this
form by expanding the terms in Eq. (8) with Eq. (10),

N 8X; 1[oxT r . 0X;
ijl;(—y- ar, —2[ o, -T-X;+X; -T- o, ) (11)
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Both energy and force terms have a linear correlation with the
expanded descriptors through a set of weight coefficients {yo, y1,
..o 5> 11, T2, . .., Tn}. For convenience, we call the set of coeffi-
cients as w from now on. To obtain the best w, we solve the objective
cost function following the least squares formula for both energy and
force,

1< Ei — ERef 2 3N!“0m
A=— Z ( i : i ) + /—f Z (Fi,j —Ffff)z , (12)
2s i=1 Natom 3Natom j=1

where s is the total number of structures, i loops over all structures,
and j loops over all atoms for each structure i in all three directions.
N*™ is the total number of atoms in the ith structure. § is the force
coefficient. It balances the energy and force contributions due to the
number of force components being much larger. The cost function
compares the predicted values obtained from the regression (E; and
F;j) to the true values of E*f and Ffff.

To prevent overfitting, it is useful to add a penalty term to
account for the complexity of the entire weights (m) to Eq. (12),

Ap = % ;(w")z, (13)

where « is a dimensionless number that controls the degree of
penalty. Adding such a penalty function in the context of machine
learning is called regularization. Then, the optimum solution can
be solved by finding the w leading to the zero partial derivative
of A with respect to each element in w. Accordingly, we use the
numpy.linalg.Istsq™* solver for generalized linear regression prob-
lems.

2. Neural network regression

In this section, the high-dimensional NN (Fig. 1) is introduced.
The regression based on NN can be considered as an extension
of the linear regression model. For a crystal structure that consists
of N atoms, there are N positions (Ry) for the atoms to arrange
themselves. N atom-centered descriptors (X;) for the structure can
be mapped based on this atomic configuration. Each of the atom-
centered descriptors is, then, fed into a NN architecture [Fig. 1(b)].
The NN architecture consists of input, hidden, and output neurons.
These neurons are organized in layers as shown. The neurons in the
first layer (input layer) are occupied by the atom-centered descrip-
tors. The neuron at the output layer defines the atomic energy, E;.
Hidden layers lie between the input and output layers. In the case of
Fig. 1(b), there are two hidden layers. In particular, we will call this
NN architecture 2-3-3. 2 represents two neurons in the input layers.
3-3 represents two hidden layers with 3 neurons each. It is redundant
to repeatedly mention the output layer as the node is always 1. The
neurons in hidden layers represent no physical meaning. They act
as a functional form to predict the atomic energy. There is no limit
to the number of hidden layers. However, the flexibility of NNP will
depend on the number of neurons present in the NN architecture.
The connectivity in between the neurons are the weight parameters
(fitting parameters). Mathematically, one can calculate the value of a
neuron in this form,

N
X, = ai,(bi,l 2 Wi ~Xiﬁ). (14)
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[ Bias ]

FIG. 1. (a) A schematic diagram of the high-dimensional neural networks. The
red diagrams are parts of (b) the neural network architecture. Each atom in a
structure is first mapped into atom-centered descriptors according to the atomic
environment of the structure. The atom-centered descriptors serve as inputs in the
neural network architecture that outputs the atomic energy. Finally, the collection
of the atomic energies is the total energy of the structure.

The value of a neuron (XL,) at layer I can be determined by the
relationships between the weights (W,lq;:l}l), the bias (bf;l), and all
neurons from the previous layer (Xi,;l). Wf,;,lﬁl specifies the connec-

tivity of neuron #; at layer [ — 1 to the neuron #; at layer L bi{l
represents the bias of the previous layer that belongs to the neu-
ron n;. These connectivities are summed based on the total number
of neurons (N) at layer [ — 1. Finally, an activation function (alnx)
is applied to the summation to induce non-linearity to the neuron
(XL, ). X, at the output layer is equivalent to an atomic energy, and it
represents an atom-centered descriptor at the input layer. Since the
atomic energy has no reference value to the DFT energy, each atomic
energy is collected as in Eq. (7) to obtain the total energy of a crystal
structure. The accuracy of NNP will rely on the accuracy of the NN
architecture to predict the energy.

To train the NNP, we can consistently use the cost function
in Egs. (12) and (13). The minimization problem is then solved
by our in-house stochastic gradient descent and Adaptive Moment
Estimation (ADAM)" optimizer. Alternatively, we interfaced
our in-house code with the SciPy package,” so it is possible
to use the Limited-memory Broyden-Fletcher -Goldfarb-Shanno
(L-BFGS) method"” for this study.

I1l. RESULTS

In this section, we discuss about the development of accurate
and transferable MLFFs. First, we introduce two types of datasets—a
localized dataset and a diverse dataset. Second, we will validate our
machine learning framework with the localized dataset as the base-
line. Third, we explore the interplay between bispectrum coefficients
and the two machine learning regressions (generalized linear regres-
sion and NN) on the localized dataset. This subsection is dedicated
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to further validate the localized dataset with a new NNP fitting strat-
egy. Finally, we will develop a transferable silicon MLFF based on
the new strategy.

A. Data sets

Here, we present two silicon datasets. Set #1 is the localized
dataset, obtained from Ref. 19. Set #1 contains 244 structures in total
(219 for training and 25 for test), which includes the ground state
of crystalline structure, strained structures, slabs, vacancy, and lig-
uid configurations from MD simulations. To generate the diverse
dataset, we utilized our in-house PyXtal code™ to produce thou-
sands of silicon structures with various numbers of atoms in the unit
cell from 1, 2, 4, 6, 8 to 16. Random space group (1-230) assign-
ment was applied to these silicon structures. For each random struc-
ture, we performed four consecutive geometry optimization steps
at the level of DFT with a steady increase in precision. The max-
imum numbers for each ionic step were 10, 25, 50, and 50. The
relaxed images were then selected to our training pool to represent
the shape of PES toward the energy minima. With this scheme, we
ensured that not only the minima but also the configurations around
the minima would be captured during the energy fitting. Afterward,
we performed single-point DFT calculations for all configurations
in the training pool using the parameters described in Sec. I A.
Finally, 5352 silicon structures (Set #2) were selected by remov-
ing structures with energies that are higher than —4.000 eV/atom
(i.e., 1.400 eV/atom higher than the ground states). In total, Set #1
has 15078 atoms, and Set #2 has 31 004 atoms. We note that the
energy cutoff (600 eV) used in our DFT calculation is slightly higher
than the one (520 eV) used in Ref. 19. However, this resulted in
negligible differences according to our test for the same structures.
Therefore, we will use these two datasets for direct comparison in
Secs. [I1 D-1IT F.

ARTICLE scitation.org/journalljcp

As shown in Fig. 2, Set #2 covers more diverse atomic envi-
ronments in terms of energy, force, and density. Set #1 includes 244
structures that span from —4.560 eV/atom to —5.425 eV/atom in
energy and 17.56 A’/atom to 40.89 A*/atom in density. The energy
of Set #2 ranges from —4.000 eV/atom to —5.425 eV/atom, and the
density ranges from 8.295 A’/atom to 52.81 A*/atom. The force dis-
tribution in Set #2 is wider than that in Set #1. In order to probe
the similarity between the two datasets, we further assessed them
with the principal component analysis (PCA) technique. While the
projection of two most dominating principal components is shown
in Fig. 2, the principal components were fitted with the bispectrum
coefficients mapped from the Set #2 structures. The inset shows that
the data points of Set #1 cover mostly the empty space in the con-
centrated area. In other words, it appears to be that Set #1 and Set
#2 rarely overlap. This indicates that two datasets encompass dif-
ferent atomic environments, which is expected since two different
strategies were employed in generating the atomic configurations.
Therefore, the two datasets are complementary and can be used to
cross-validate each other in the MLFF development.

It is important to note that these two sets of data were obtained
through entirely different approaches. Set #1 was not designed to
generate an accurate force field for Si but rather to compare dif-
ferent MLFFs on a small, standardized dataset applicable to several
elemental systems (for example, only 60 snapshots from ab initio
MD were included into it). In a typical MLFF development, a few
thousand or more configurations will be needed for both the Gaus-
sian process’""® and NN regressions.”””” Therefore, the training
results from Set #1 are expected to gain some improvement by
employing a larger version of Set #1 with the same strategy (e.g.,
adding more MD snapshots). However, many other features in the
PES will remain missing. Compared to Set #1, Set #2 covers more
energy basins in the PES since it was obtained from an unbiased

(@)
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FIG. 2. (a) The energy vs volume plot
for training Set #1 and Set #2. The his-
tograms of energy and forces are pre-
sented in (b) and (c), respectively. (d)
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a zoomed-in view of the concentrated
area. In the area, Set #1 is highly con-
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and more uniform sampling. For instance, we found that Set #2
contains the high pressure -Sn phase of silicon and many other
phases with five- and six-coordinated silicon atoms. While such
atomic environments can also exist in silicon grain boundaries and
other types of defects generated from high temperate MD simula-
tions, the MLFF training may not describe these atomic energetics
accurately when it attempts to fit the total energy of the system.
Therefore, we believe that a MLFF with better coverage of the PES
landmarks by small structures is more effective for an accurate mod-
eling of rare events under various conditions (e.g., phase transitions,
pronounced deformations, and chemical reactions). As we will dis-
cuss in Sec. I1I E, fitting on Set #2 is considerably more challenging
than Set #1. While many relatively simple models can yield satis-
factory errors for Set #1, the overall accuracy for Set #2 is notably
lower, regardless of the machine learning methods. Therefore, our
goal of this work is to fit a Si-MLFF, which can describe Set #2 rea-
sonably well while retaining a similar level of accuracy for Set #1.
Prior to this, we will verify our MLFF implementation with Set #1 in
Sec. [1I B.

B. Verification with the localized data set

In Ref. 19, the authors presented an extensive benchmark for
silicon (as well as several other elemental systems) with different
MLEFF approaches. This provided us a foundation to verify our
MLFF implementations by using their data for training and test-
ing. With Set #1, we attempted to reproduce the results based on the
NNP, SNAP, and quadratic SNAP (qSNAP) methods. To compute
the descriptors, we employed the same parameter setting as reported
in Ref. 19, which is summarized in Table L. In the original literature,
there were 9 G* and 18 G* descriptors. We made a deeper inspec-
tion on the histogram of the computed symmetry functions of the
entire Set #1. We identified that descriptors with large # values span

TABLE |. The setting used to compute the atom-centered descriptors in this study.
The Behler-Parrinello descriptors are consistent with Ref. 19, except that R; was set
to 4.8 A for the quadratic regression in the previous literature. Moreover, we con-
sidered bispectrum coefficients with the band limit Inax up to 8. The asterisk symbol
denotes the reduced parameter set for Behler—Parrinello descriptors.

Descriptors ~ Parameters Values
G R. (A) 5.2
R (A) 0
n(A7%  0.036%,0.071%,0.179*,0.357%, 0.714%,
1.786%,3.571,7.142, 17.855
G! R (A) 5.2
A (A) —1,1
{ 1
n(A2) 0.036%,0.071%, 0.179%, 0.357%, 0.714,
1.786, 3.571, 7.142, 17.855
B R (A) 4.9
Imax 2,3,4,5,6,7,8
Normalization True and false
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in a very narrow range. Narrow-range descriptors were less likely
to discriminate different local atomic environments, and they could
introduce numerical noise. Therefore, we reduced the parameter set,
which included only 6 G* and 8 G* descriptors for this study. The
reduced parameter sets are marked with asterisk symbols. For con-
venience, we are naming the full Behler-Parrinello descriptors as
G27 and the reduced Behler-Parrinello descriptors as G14. For bis-
pectrum coefficients, the expansion is limited to several finite orders
since the higher indices of I can only be beneficial in detecting subtle
signals on the neighbor density map. In this study, we only consid-
ered the band limit (I;max) of up to 8, with focus on 3, 4, and 5 (30,
55, and 91 bispectrum coefficients). They are denoted as B30, B55,
and B91. Furthermore, we investigated the case of B with normaliza-
tion, and they are denoted as B30, B55, and B91. Correspondingly,
the labelings with the regression techniques are NNP+G27 for the
NN regression with G27 descriptors, LR+B55 for linear regression
with B55 descriptors, and QR+B55 for quadratic regression with B55
descriptors.

For the cases of linear and quadratic regressions, the results are
deterministic as long as the force coefficient in Eq. (12) is given.
Figure 3 displays the gradual changes in mean absolute error (MAE)
values for energy and forces by varying the force coefficient () from
1 x 107° to 1 x 10 for both LR+B55 and QR+B55. For each regres-
sion, these points seem to form a Pareto front. Namely, there is no
single point that can beat the other points in both energy and force
MAE values. Here, we choose a range from the Pareto front that
leads to an approximately even change on other sides. This point
corresponds to the force coefficient closest to 1 x 107, When = 1
x 1074, B55+LR yields the MAE values of 6.94 (6.28) meV/atom for
energy and 0.11 (0.12) eV/A for force in the training (test) dataset.
For B55+QR, the results gain significant improvement. The final
energy MAE value is 2.50 (2.21) meV/atom, and the force MAE value
is 0.06 (0.08) eV/A. The results are expected since the quadratic form
allows the coupling of bispectrum coefficients.'” However, the num-
ber of weight parameters also increases notably from 56 to 1596,

N
o

—4+— B55+LR (56)
B55+QR (1596)

=
w

Energy MAE (meV/atom)
o =

*

0.050 0.075 0.100 0.125 0.150 0.175 0.200
Force MAE (eV/A)

FIG. 3. The comparison of fitting between linear and quadratic regressions based
on the B55 descriptors (Imax = 4) applied to Set #1. For each regression, the
energy MAE and force MAE values were collected by gradually varying the force
coefficients from 1 x 105 to 1. The numbers of weight parameters are given in
parentheses. The marked black asterisks correspond to the results when the force
coefficient is at 1 x 1074,
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FIG. 4. The performance of NN regression on G14 and B30 as a function of weight
parameters. For comparison, the results from linear and quadratic regressions are
also included.

which increases the computational cost for both FF training and
prediction.

For NNP+G27, we tested the NNP fitting with the NN architec-
ture of 27-24-24. The predicted MAE values are 5.65 meV/atom in
the training dataset and 5.60 meV/atom in the test dataset. The met-
rics are close to the previously reported values: 5.88 meV/atom and
5.60 meV/atom in Ref. 19. Our force MAE values are 0.095 eV/A and
0.106 eV/A, agreeing with the previous report as well. Furthermore,
we employed reduced Behler-Parrinello descriptors to the NNP
fitting (NNP+G14). It is found that the training with NNP+G14
also yielded comparable metrics. This indicated that the removed
Behler-Parrinello descriptors were indeed redundant, and they can
cause numerical noise during the NNP training. Correspondingly,
we adjusted our NNP training strategy toward G14 to investigate the
impacts of hyperparameters on NNP training. In contrast to linear
regression, the NNP training is much less vulnerable to the choice
of force coefficient since the NNP can compromise for more flex-
ible functional forms. It is rather reliant to the hidden layer size.
Figure 4 shows the energy MAE values scanning across the hidden
layer sizes for NNP+G14 with § fixed at 0.03. The overall picture
suggests that NNP performances tend to improve as the NNP model
becomes more flexible. However, the NNP accuracy will saturate at
some point. Beyond the saturation point, increasing the hidden layer

TABLE II. The comparison of mean absolute error (MAE) values between this work
and Ref. 19 for the same 244 Si dataset (Set #1). The results from Ref. 19 are shown
in parentheses. For LR+B55 and QR+B55, the results are shown when the force
coefficient is at 1 x 10—*. For the NNP fitting, we used NN architectures of 27-24-24
and 14-12-12.

Fitting Train energy Testenergy Trainforce Test force
method (meV/atom) (meV/atom)  (eV/A) (eV/A)
LR+B55 6.94 (6.38) 6.28 (6.89)  0.11(0.21) 0.12(0.22)
QR+B55 2.50 (3.98) 2.21(3.81) 0.06(0.18) 0.08(0.17)
NNP+G27  5.65(5.88)  5.60(5.60) 0.09(0.12) 0.11(0.11)
NNP+G14 5.95 6.33 0.10 0.11
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size will only raise the computational cost and lower the chance of
finding optimal weight parameters. We also mention that the results
from QR+B14 yield better performance than NNP with the same
number of parameters. In principle, NNP should be able to self-learn
a model similar to QR with the same number of weight parame-
ters. However, different NNP trainings from different initial random
guesses may yield somewhat less optimal solutions. This practice
suggests that quadratic regression can be an alternative approach
when the descriptor size is relatively small.

The results of verification with different training strategies are
summarized in Table IT. Compared to Ref. 19, our results are close or
maybe slightly better, especially in the force performances for gen-
eralized linear regression. Therefore, we proceed to make further
investigations on Set #1 by using different strategies.

C. Bispectrum coefficients and algorithms interplay

In this section, MLFF fitting with bispectrum coefficients will
be discussed in detail by using both generalized linear and NN
regressions on Set #1. First, the performances of generalized lin-
ear regression can be improved based on the normalization factor
of bispectrum coefficients prior to the MLFF fitting. In the origi-
nal implementation of SNAP,'' the bispectrum coefficients are not
normalized prior to the MLFF fitting. However, Fig. 5 shows the

(a) No normalization
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© 25+
S
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w
< 151
s
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(0]
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0 . . . .
0.10 0.15 0.20 0.25
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g 301 Imax = 3 (30)
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g 151 —— Imax = 7 (204)
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FIG. 5. The performance of linear regression based on the bispectrum coefficients
without (a) and with normalization (b). In each plot, /max values from 2 to 8 were
considered. The number of descriptors is given in parenthesis.
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benefits of normalization prior to the MLFF fitting. Linear regres-
sion achieves better performances for both energy and forces as Imax
increases. At Imax > 5, there are no significant gains in the MAE
values as the computational cost increases. The insignificance of nor-
malization can be due to the limitation of linear regression ability to
express the complexity.

Second, Fig. 4 shows the overall NNP fitting with bispectrum
coefficients as the inputs to the neural network architecture. The
results of NNP+B30 are trained with different hidden layer sizes.
The best accuracy is achieved with the hidden layer size of [24, 24].
The 30-24-24 architecture consists of 1369 parameters in total. The
training MAE values are 3.18 meV/atom and 0.07 eV/A, and the
test MAE values are 3.54 meV/atom and 0.08 eV/A. These met-
rics reach comparable values to that from QR+B55 (see Table II)
with few bispectrum coefficients. For reference, linear regression
and quadratic regression results with the corresponding number of
bispectrum coefficients are also marked in Fig. 4. NNP with bis-
pectrum coefficients can gain notable improvements in comparison
to linear regression and quadratic regression. The improvements
are expected since NN allows more flexible functional forms to
describe the deviation from linearity. Meanwhile, quadratic regres-
sion achieves significant improvement in accuracy compared to lin-
ear regression due to the extended polynomial forms. However, sim-
ilar accuracy can be attained with NNP fitting with a smaller number
of weight parameters.

D. Transferability of the MLFF from a localized
data set

Our in-house code has the ability to apply various descriptors
and regression techniques to train MLFF with satisfactory accuracy
(energy MAE of <10 meV/atom and force MAE of <0.15 eV/A) on
Set #1. From computational perspective, bispectrum coefficients can
cover more orthogonal sets and are easier to be expanded. Therefore,
we focus on the use of bispectrum coefficients as the main descrip-
tors from now on. Using the MLFF trained on Set #1, we tried to val-
idate the prediction power on Set #2 (the more diverse dataset). The
models include NNP with the 30-10-10 architecture (431 parame-
ters, with  at 0.03), linear regression (31 parameters), and quadratic
regression (528 parameters). The three scenarios use normalized bis-
pectrum coefficients with Ima.x of 3 as normalized bispectrum coeffi-
cients suggest slight accuracy in improvement. Table II] summarizes
the results. In general, the prediction power of the MLFF on Set #2,
especially in energy, is still poor, though the force errors are accept-
able. It is not surprising as the machine learning ability in extrap-
olation is known to be poor. The performance of the MLFF yields

TABLE Ill. The MAE values of the predicted energy and forces of Set #2 by training
on Set #1. The NN architecture of 30-10-10 is used for providing comparable weight
parameters as the quadratic regression. The numbers inside parentheses are the test
MAEs.

NN LR QR
Energy (meV/atom) 4.7 (70) 7.5 (110) 4.0 (265)
Force (eV/A) 0.08(0.13)  0.12(0.15)  0.08 (0.21)
Number of parameters 431 31 496
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TABLE IV. Comparison of different machine learning potentials of Si shown in RMSE
values.

QR NN GPR” DL"
Energy (meV/atom) 9.7 14.8 20.2 N/A
Force (eV/A) 0.22 0.16 0.25 0.12

great accuracy based on the given training dataset. The character-
istic of atomic environments of Set #2 is too broad, and most of the
data points lay outside of Set #1. Therefore, the predicted energy and
force are no longer reliable.

Despite the unsatisfactory accuracy, some insights can be
gained from this numerical experiment. NN regression can achieve
better transferability in comparison to linear and quadratic regres-
sions. Although the quadratic regression yields the best accuracy in
training (3.99 meV/atom energy and 0.08 eV/A force), it also pro-
duces the largest error on the test set. On the contrary, NN regres-
sion achieves a similar level of accuracy in training (4.70 meV/atom
energy and 0.08 eV/A force). However, the errors on the test set
(69.8 meV/atom energy MAE and 0.13 eV/A force MAE) are much
smaller. This can be partially explained by the fact that NN adopts
more flexible functional forms during fitting.

E. Training with data from random structure
dgenerator

For the sake of data diversity, it is more natural to train the
MLEFF based on Set #2 and test its performance on Set #1. To train
reliable MLFF on Set #2, we decided to use more bispectrum coeffi-
cients and a larger NN architecture and test on Set #1. In addition,
polynomial fittings were included again for the purpose of compar-
ison. For polynomial regression, Imax at 5 with a cutoff radius of
4.9 A was applied. According to Fig. 5, normalizing the bispectrum
coefficients had a negligible effect on the results. Hence, normaliza-
tion was ignored. The § value was fixed at 1 x 10™* for quadratic
regression and 1 x 10~ for linear regression. The NN architecture
of 91-34-34 was used to give comparable weight parameters as the
quadratic regression.

Figure 6 summarizes the results of Set #2 training. In
terms of energy, quadratic regression performs the best accuracy
(5.90 meV/atom), whereas NNP can predict less accurate energy
(9.81 meV/atom) but better forces (0.08 eV/A). It should be empha-
sized that Set #2 contains a smaller unit cell (1-16 atoms in a unit
cell) than Set #1 (up to 64 atoms in a unit cell). This transition from
smaller to larger cells can introduce long-range effects that were not
accounted for in the training.  Therefore, the MAE values on the
test set are consistently larger than the training set. Furthermore,
Set #1 may contain some manually selected atomic configurations.
These configurations may not be fully covered by our random gen-
erated structures. While linear regression predicts well on the forces,
it guides the energy predictions to unsatisfactory results. This may
be due to the limitation of the regression technique as the smaller
number of parameters fails to describe the true PES. Therefore, our
recommendation is to use either quadratic regression (similar to the
recently proposed gSNAP method'”) or NN for a better fitting of
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FIG. 6. The performance of trained MLFF on Set #2.

a diverse dataset. Compared to the quadratic regression, NN is our
preferred choice due to its flexibility.

Table IV shows our results in comparison to studies.
The authors juxtaposed among several atom-centered descriptors,
including bispectrum coefficients, which were coupled with Gaus-
sian process regression. In particular, the root mean square errors
(RMSEs) for energy and forces with Imay at 5 are 20.2 meV/atom and
0.25 eV/A. Meanwhile, the training RMSEs of our quadratic regres-
sion yield 9.7 meV/atom and 0.22 eV/A and the training RMSEs
of the 91-34-34 architecture are 14.8 meV/atom and 0.16 eV/A.
In another study, Kuritz et al. focused on training atomic forces
using a deep learning model with the environmental distances as
the descriptors. The force predictions are performed at a scaling
from 16 atoms to 128 atoms, yielding a MAE of 0.12 eV/A," given
that the NN nodes are in the order of 10*/layer. This phenomenon

29,49
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proves that the choice of descriptor can reduce the complexity of
MLFF.

F. Physical properties

One of the critical requirements for MLFFs is to predict basic
material properties, including but not limited to lattice parameters,
elastic constants, and bulk moduli of diamond cubic Si. To obtain
the elastic constants, we computed the stress—strain relation and fit-
ted the relation to a set of linear equations built from the symmetry.
For each applied deformation, the geometry of the structure was
optimized to gain a net force of zero. The summary of the properties
is tabulated in Table V.

First, it is crucial to validate our code on Set #1. In the column
of Set #1 in Table V, the performances of the MLFFs are presented
with different training strategies: energy-force linear regression (EF-
LR), energy-force-stress linear regression (EFS-LR), energy-force
quadratic regression (EF-QR), energy-force-stress quadratic regres-
sion (EFS-QR), energy-force NN (EF-NN), and energy-force-stress
NN (EFS-NN). All of the training involved bispectrum coefficients
as the descriptor. Linear and quadratic regressions used bispectrum
coefficients with Imax of 4, whereas NN used Inax of 3. Here, we
used the NN architecture of 30-10-10. Moreover, EF was trained
with DFT energy and forces only as the reference values, while EFS
included the DFT stress information in the training. Without stress
involvement, the quadratic regression performances are the clos-
est to the DFT values. Seemingly, linear and NN regressions fail to
extrapolate the C;,. However, the Cy; values tend to get closer to
the DFT with tiny sacrifice in the accuracy of C;1, when stress is
involved.

Second, without stress information, linear and quadratic
regressions are considered to be more transferable in predicting the
physical properties of Set #2. Evidently, linear regression gains no
prominent refinement without trade-off between elastic constants
as stress information is added. However, the values are the closest
to the experimental values. On the other hand, quadratic regression
exhibits accuracy boosts in Cy; and the lattice constants in compari-
son to the DFT. As stress training is employed, NNP seems to benefit
the most in terms of transferability. Consequently, it is crucial to
include stress tensors during the training of NNP.

TABLE V. The experimental elastic constants®” of cubic-diamond silicon are shown at zero-Kelvin values, while the DFT data are obtained from Ref. 19. In comparison to the
Gaussian approximation potential (GAP) of Si,”> the GAP results are shown below. The numbers of weight parameters are displayed in parentheses. EF and EFS stand for
energy-force and energy-force-stress training. LR, QR, and NN are linear, quadratic, and neural network regressions, respectively. The NN architecture is 30-10-10 for Set #1

and 91-34-34 for Set #2.

Set #1 Set #2
EF-LR EFS-LR EF-QR EFS-QR EF-NN EFS-NN EF-LR EFS-LR EF-QR EFS-QR EF-NN EFS-NN
Expt. DFT GAP (56) (56) (1596) (1596) (431) (431) 91) (91) (4371) (4371) (4353) (4353)
a(A) 5.429 5.469 5.467 5.466 5.462 5.467 5.473 5.468 5415 5469 5.503 5.468 5.509 5.467
C11 (GPa) 167 156 153 153 151 149 152 157 154 137 167 173 158 167 153
Ci2 (GPa) 65 65 56 100 62 60 57 96 58 76 73 55 55 128 57
Cy4 (GPa) 81 76 72 69 70 75 75 66 68 73 85 81 71 43 76
Byryg (GPa) 99 95 89 118 92 90 89 117 90 96 104 94 89 141 89
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IV. DISCUSSION
A. Training dataset

In general, MLFF lacks extrapolative ability, unlike the tradi-
tional force field method. The training dataset plays an extremely
important role in MLFF development. A more complete dataset can
grant the trained MLFF with more powerful predictive ability. The
use of randomly pre-symmetrized crystal structures is able to pro-
duce a dataset with highly diverse atomic distribution.””*”" In this
work, we prepared the training dataset from crystal structure predic-
tion techniques. However, several recent works demonstrated that
the MLFF can also be trained on-the-fly.""”” In addition to gen-
erating random structures, advanced sampling techniques such as
metadynamics'’”* and stochastic surface walking”’ have also been
used to provide the training data for MLFF development. In general,
each method focuses on different aspects of the PES. For instance,
the surface walking method may work better in describing the tran-
sition path between different low energy configurations, while ran-
dom structure generation offers more energy basins of the PES.
On the other hand, the metadynamics method excels at describ-
ing the liquid and amorphous states. At the moment, it remains
challenging in obtaining a universal MLFF to fully replace DFT
simulation for general purpose.”’ Given the increasing power of
regression techniques such as deep learning,”* it will be interest-
ing to know if a MLFF can ultimately achieve the DFT accuracy
by considering all training configurations from different sampling
techniques.

B. Limitation of the objective function

A typical DFT calculation outputs the total energy for each con-
figuration. Thus, the MLFF is trained to describe the total energy
of a structure. However, it is possible that the MLFF fails to dis-
tinguish the atomic energies for the trained structures.” To pre-
vent the incorrect energy decomposition, one can either develop
the approach to extract the site energy from the DFT simulation™
or intentionally prepare the structures with nearly identical atomic
environments in the training. Random crystal structure genera-
tion with pre-symmetrization follows the latter. Therefore, Set #2
includes many structures with smaller unit cells to allow for better
descriptions of the PES. Hence, this can help the performance in pre-
dicting the total energy. In addition, Set #2 can be further extended
to consist of more varieties of atomic environments to enhance the
capability of the current NNP. For example, it was shown above that
adding stress tensors can help improve elastic constant predictions.

C. Descriptors

As the complexity of a system’s PES increases, different atomic
descriptors can yield different accuracy in MLEF development.” For
instance, thousands of nodes are needed to achieve similar accuracy
in NNP transferability,” compared to 34 nodes in this study. The
key to extract reliable descriptors is by reconstructing the atomic
neighbor density function. The expansion of bispectrum coefficients
as the descriptor is more straightforward to be applied than the
Behler-Parrinello descriptors. Nevertheless, it is important to take
account of the relation between computational cost and accuracy in
MLFF training. The current MLFF is developed through the recon-
struction of the neighbor density function, which is described by the
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Dirac 8 function. The full description of the true neighbor density
can only be partially represented by the finite spherical harmonic
expansion. In addition, it is numerically unstable to compare the dif-
ferences between two § functions. A better design of the descriptor
uses smooth Gaussian functions to express the atomic neighbor den-
sity, as recently developed in the SOAP method.”’ The comparison
between SO(4) bispectrum and SOAP descriptors for NNP devel-
opment will be made in the future code development. Moreover,
other similar types of descriptors, such as moment tensor potential
(MTP)," will be investigated in the future.

D. Fitting scheme

Linear regression, as the simplest method in curve fitting, has
been used in developing several MLFFs.'"'* In particular, the MTP
approach'’ can predict energy and forces with great accuracy while
maintaining acceptable computational cost. The advantage of the
linear regression method lies in its simple algorithm, which provides
easy and fast computation. Despite the simplicity, linear/quadratic
regressions are usually sensitive to the noise in the dataset. In this
work, we focused on NN regression since it has more flexibility,
which can yield better accuracy. Compared to the linear/quadratic
regressions, including stress training in NNP is critical to pro-
mote the transferability. Beside NN, some non-parametric regres-
sion techniques, such as Gaussian process regression, have also been
proved to be efficient in MLFF development.' However, this is
beyond the scope of the current study.

E. Applicability

For the purpose of MD simulation around the equilibrium
state, fitting the MLFF with a localized dataset generated from MD
simulation is, perhaps, sufficient. However, the primary goal of this
work is to generate high quality silicon MLFF for a more general
purpose, which requires a complete description of PES for a given
chemical system. As discussed above, the MLFF trained with Set #2
is generally capable of describing the entire PES of the crystalline
system better. We expect that the MLFF generated in this work can
be used to replace DFT simulation in predicting the structures of
crystalline silicon, given that similar works have been done in sev-
eral elemental systems.”"”* Yet, one needs to keep in mind that the
quality still depends on the coverage of training dataset. For instance,
additional data are needed to enable the prediction for surfaces and
clusters.”” Moreover, the trained MLFF may not be able to describe
the high energy configurations well since Set #2 only contains struc-
tures with energy less than 1.400 eV/atom from the ground state.
It was found that some nonphysical configurations (e.g., short dis-
tances and overly clustered) may be favored under high temperature
MD simulations. In this case, it is useful to either add a few explicit
two-body and three-body terms to prevent the nonphysical con-
figurations™® or include some highly strained configuration in the
training. We will consider the combination of physical and machine
learning terms in the training and investigate the applicability.

V. CONCLUSIONS

In summary, we present a systematic investigation of MLFF
fitting for elemental silicon using our in-house code. The silicon
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MLFFs are developed by implementing different regression tech-
niques based on Behler-Parrinello and bispectrum coefficients as the
descriptors. The MLFFs trained with Set #1 (the localized dataset)
can be described accurately in both energy and forces using gener-
alized linear regression and NN based on both descriptor choices.
Among the MLFFs, fitting NNP with the bispectrum coefficients
is the most favorable option. This is due to the expansion of
bispectrum coefficients being more straightforward than Behler-
Parrinello descriptors. In addition, NNP provides a more flexible
framework in which the functional form can be easily adjusted by
adding/reducing the size of weight parameters. For Set #2 generated
from random symmetric structures, the NNP fitting with bispec-
trum coefficients achieves accuracy at 9.8 meV/atom for energy and
80 meV/A for force, which is comparable to the current state of
the art based on other approaches. A thorough study on the appli-
cability of Set #2 silicon MLFF on more challenging simulations
such as crystal structure search will be the subject of our future
work.
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