
ARTICLE

Computation and data driven discovery of
topological phononic materials
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Dianzhong Li1,2, Qiang Zhu 3✉ & Xing-Qiu Chen 1,2✉

The discovery of topological quantum states marks a new chapter in both condensed matter

physics and materials sciences. By analogy to spin electronic system, topological concepts

have been extended into phonons, boosting the birth of topological phononics (TPs). Here,

we present a high-throughput screening and data-driven approach to compute and evaluate

TPs among over 10,000 real materials. We have discovered 5014 TP materials and grouped

them into two main classes of Weyl and nodal-line (ring) TPs. We have clarified the physical

mechanism for the occurrence of single Weyl, high degenerate Weyl, individual nodal-line

(ring), nodal-link, nodal-chain, and nodal-net TPs in various materials and their mutual cor-

relations. Among the phononic systems, we have predicted the hourglass nodal net TPs in

TeO3, as well as the clean and single type-I Weyl TPs between the acoustic and optical

branches in half-Heusler LiCaAs. In addition, we found that different types of TPs can coexist

in many materials (such as ScZn). Their potential applications and experimental detections

have been discussed. This work substantially increases the amount of TP materials,

which enables an in-depth investigation of their structure-property relations and opens new

avenues for future device design related to TPs.
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Over the past decade, topological concepts have made
far-reaching impacts on the theory of electronic
band structures in condensed matter physics and mate-

rials sciences1–3. Thousands of topological electronic materials4–8

were theoretically proposed9–11 and some of them were experi-
mentally verified, such as, topological insulators4–8, Dirac/Weyl
semimetals12–16, and nodal-line semimetals17–21. As the coun-
terpart of electrons, phonons22 are energy quanta of lattice
vibrations. They make crucial contributions to many physical
properties, such as, thermal conductivity, superconductivity, and
thermoelectricity, as well as specific heat. Similar to topological
electronic nature, the crucial theorems and concepts of topology
can be introduced to the field of phonons, called topological
phononics (TPs)23–43. In particular, TPs in solid materials are
also correlated to some specified atomic lattice vibrations gen-
erally within a scale of THz frequency, thereby providing a rich
platform for the investigation of various quasiparticles related
with Bosons.

TPs have been theoretically or experimentally investigated in
solid-state materials. Several theoretical models, including
monolayer hexagonal lattices35,36, Kekulé lattice37,38, and one-
dimensional (1D) chains39, were discussed. More recently, a
number of real materials were predicted to host the Weyl
TPs23–29,33, nodal-line TPs 30–34, and nodal-ring phonons32.
Single Weyl TPs were predicted in noncentrosymmetric WC-type
materials23,25, exhibiting twofold degenerate Weyl points with the
±1 topological charges. In FeSi-type materials, double Weyl TPs
were predicted and then experimentally confirmed24,40. In SiO2,
the coexisted single and double Weyl TPs were suggested29. In
addition to occupying the discrete sites in the reciprocal space as
Weyl points, these band crossing points can also continuously
form nodal-lines (e.g., in MgB2 (ref. 31) and Rb2Sn2O3 (ref. 33)) or
nodal-rings TPs (e.g., in graphene32, bcc C8 (ref. 30), and
MoB234). TPs exhibit the typical features of bulk-surface (edge)
correspondence, which are rooted in different geometry phases
of Hamiltonian. The existence of multiple critical physical
phenomena, such as phononic valley Hall effect36, phononic
quantum anomalous Hall-like effect, and phononic quantum spin
Hall-like effect controlled by multiple-valued degrees of free-
dom37, are beneficial to TPs’ applications. Because the topologi-
cally protected states are immune to backscattering1–3, TPs would
be very promising for applications in the abnormal heat
transport44,45, and phonon waveguides38, and so on. In addition
to the atomic crystals, topological phonons have also been
extensively studied in mechanical metamaterials46–50, acoustic
systems51–53, and Maxwell frames54–57.

Unlike the topological electronic materials in which one only
needs to focus on energy states near the Fermi level, phonons
exhibit several distinct properties. First, there are no limits of
Pauli exclusion principle. Second, each phonon mode, following
Bose–Einstein statistics, can become practically active, due to
thermal excitation. Third, phonons are charge neutral and spin-
less Bosons, which can not be directly influenced by the electric
and magnetic fields. Hence, a full frequency analysis for all
phononic branches is needed for the study of TPs. To date, a
large-scale identification of TP materials remains challenging,
because it is far more expensive to compute the phonon band
dispersions than to calculate the electronic band structures.
Hence, it is certainly more difficult to seek feasible TP materials in
a high-throughput (HT) computational manner, as compared
with the recent works in topological electronic materials9–11.

Herein, we present an efficient and fully automated workflow
that can screen the TP crossings in a large number of solid
materials. Our results reveal that TPs extensively exist in phonon
spectra of many known materials, which can be classified into two
main types of Weyl and nodal-line (ring) TPs. We have

elucidated the physical mechanism for the occurrence of Weyl
and nodal-line (ring) TPs. Weyl TPs can be found as (1) single
TPs in the crystals without the inversion symmetry, and (2) high
degenerate TPs in the noncentrosymmetric crystals with the
presence of screw rotations. Nodal-line (ring) TPs can be found
as individual nodal-line (ring), nodal-link, nodal-chain, and
nodal-net TPs in the crystals with PT symmetry, upon the
manipulation of the nonsymmorphic symmetry elements (e.g.,
screw rotation and glide reflection). Among the phononic sys-
tems, we have predicted the hourglass nodal-net (HNN) TPs in
TeO3, as well as the clean and single type-I Weyl TPs between the
acoustic and optical branches in half-Hesuler LiCaAs. We also
found that the extensive coexistence of different types of TPs in
materials, such as, the coexisted threefold and fourfold degenerate
Weyl TPs in BeAu and the coexisted nodal-line and nodal-ring
TPs in ScZn.

Results
High-throughput screening strategy of topological phonons.
As shown in several prototypical materials23–42, identifying TPs
requires several stages of manual selections and subjective human
decisions. To enable the TPs discovery in an automatic manner,
we present a HT screening and data-driven approach to discover
and categorize TPs, as described in Fig. 1, including the following
four steps.

(1) Phonon data collection. To obtain phonon spectra for a
large volume of known materials, we first collected 10,000
materials’ force constant data from public phonon
database58,59. The data set was further augmented by our
in-house computations for over 2000 materials belonging to
58 common structural prototypes. It is well known that the
calculated force constants are numerically sensitive to the
choices of several parameters, e.g., the supercell size, K-
point mesh, and energy cutoff. To guarantee that the
predictions are reliable, we filtered out the materials with
notable imaginary frequencies (<−0.5 THz) in the whole
phononic momentum space.

(2) Nodal straight lines identification. We computed their band
dispersions on the automatically generated high-symmetry
band paths60. If there exist degenerate phononic bands
along high-symmetry paths,we would compute the Berry
phase γn ¼

H
cdl � An, by an integral of Berry connection

(AnðqÞ ¼ i < μn;qj∇qjμn;q >) over a closed q path61, for 20
consecutive points on each of these bands. The bands
possessing continuous points with Berry phase values, ±π,
would be marked as the topologically nontrivial nodal
straight lines.

(3) Crossing points screening. For the rest band paths in the
phonon spectra, we systematically scanned 50 points on
each band path. In the entire frequency range, we
considered the points possessing two adjacent eigenfre-
quencies < 0.5 THz. For each point, we performed a
minimization based on the conjugate gradient algorithm
to obtain the local minimum of the frequency difference
(Δfreq). The points with Δfreq < 0.2 THz were checked if they
possess with Berry phase values of ±π. After optimization,
the identified crossing points may go anywhere in the entire
reciprocal space. Therefore, we also checked if the points
are at or off the high-symmetry paths.

(4) Crossing points assignment. The identified phononic cross-
ing points were then divided into two groups based on the
presence of both inversion symmetry (P) and TRS (T) for
each material. In a three-dimensional (3D) system with
PT symmetries, the Berry curvatures of nondegenerate
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phononic bands are forced to be zero and the Weyl TPs
would not occur in such system. Once the phononic bands
at a degenerate point have opposite nonzero Berry phases,
such topological nontrivial degenerate points have to occur
continuously by forming nodal-line (ring) TPs, due to the
continuity of phonon wave function in the 3D momentum
space. As a result, when the PT symmetry is present, we just
need to seek nodal-lines (rings) off high-symmetry line. In
noncentrosymmetic materials, the phonon dispersions
possibly form single Weyl or high degenerate Weyl TPs,
in addition to nodal-lines (rings) TPs. In order to
clarify these three types of TPs, we introduced another
formula of Chern number, which can be derived by
integrating Berry curvatures of a closed surface61 according
to n ¼ 1

2π

R
SdS �ΩðqÞ: Here, S is a closed surface which

wraps the target crossing point, and the Ω(q) is the Berry
curvature at the phonon momentum q on the selected
closed surface. For the isolated crossing points at the high-
symmetry band paths, we marked the points with nonzero
integer Chern numbers (e.g., ±1, ±2) as single or high
degenerate Weyl points. Otherwise, they would be labeled
as nodal-ring points, given the fact that the nodal-line
points were already extracted in step (2). Of course, it needs
to be emphasized that many materials may yield multiple
crossing bands along off high-symmetry paths, which
can be separate Weyl TPs or nodal-line (ring) TPs
(Supplementary Table 1). In principles, this approach can
be easily extended to investigate these crossing points.

In order to experimentally observe phononic surface states, a
TP material is expected to possess distinct Weyl or nodal-line
(ring) TPs and possible clean nontrivial surface TPs. For this
purpose, we mathematically define the clean TPs for the
nontrivial crossing points satisfying two conditions in bulk
phonon spectra, (i) the crossing points have to be located at local
minima with negligible or zero phononic density of states (DOS;
<0.01 states/atom/THz) and (ii) the dispersion at the local
minima is sufficiently large (∂E/∂q > 3.0 THz ⋅Å). On basis of
these two criteria, we have filtered 322 clean TP materials

(Supplementary Table 5). For instance, single type-I Weyl TPs in
LiCaAs are clean, because it does not overlap with the other bulk
phonon branches and has a zero phonon density at the frequency
of 4.590 THz (Fig. 2i, j).

Topological phonons of materials. In total, our approach
revealed that 5014 materials exhibit TPs states (Supplementary
Table 1). Among them, we have identified two main categories of
nodal-line (ring) and Weyl TP materials. Among nodal-line
(ring) TPs (Supplementary Table 2), there are several possible
subclasses, including nodal-link, nodal-chain, and nodal-net TPs
according to different symmetries. Among Weyl TPs, there are
two main subclasses of single Weyl TPs (Supplementary Table 3)
and high degenerate Weyl TPs (Supplementary Table 4)
according to the degree of phononic band degeneracy. In parti-
cular, we note that, different from electronic system, it is
impossible to have the intrinsic TP insulators without any tunable
external field. This is mainly because the phonon spectrum always
preserves the time-reversal symmetry (TRS). The TRS for phonon
spectrum was suggested to be broken only in artificial lattices,
such as in ionic lattices using Lorentz force35 and magnetic lat-
tices using spin–lattice interactions62. Therefore, we did not
attempt to identify the intrinsic topological phonon insulators in
our current work.

To understand the occurrence of TPs in various materials and
their correlations, we chose to investigate four representative
cases, including (1) half-Heusler LiCaAs alloy for single
Weyl TPs, (2) superconducting BeAu for high degenerate Weyl
TPs, (3) ScZn with the PT symmetries for nodal-line (ring) TPs,
and (4) TeO3 with both PT and nonsymmorphic symmetries for
HNN TPs. To conveniently analyze their TP states, we use a
general k ⋅ p Hamiltonian as follows,

HðqÞ ¼
X3
i¼0

diðqÞσ i ð1Þ

in which σ0 is a 2 × 2 identity matrix and σi= x,y,z denote the Pauli
matrices, respectively, di(q) are real functions, and q= (qx, qy, qz)

Fig. 1 The schematic flowchart of high-throughput computational screening on topological phonons. This workflow is capable of identifying the features
of TPs, elucidating details of topology and constructing TPs database by computing and collecting phonons of a variety of solid materials in an automatic
manner.
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are wave vectors of phonons. The energy spectrum is

ωðqÞ ¼ d0 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d21 þ d22 þ d23

q
ð2Þ

Applying different constraints of crystal and PT symmetries to
this Hamiltonian, we can describe various geometries of the
phonon crossings.

Single Weyl TPs in noncentrosymmetric half-Heusler alloys.
Half-Heusler compounds AIBIIXV (where A∈ {Li, Na, K,
Rb, Cs}; B∈ {Mg, Ca, Zn}, and X ∈ {P, As}) with non-
centrosymmetric space group F43m (no. 216) have been widely
studied 63,64. Since they share similar phonon dispersions, here
we focus on the case of LiCaAs. As shown in Fig. 2a, the As
atoms are in the 4a Wyckoff sites, while both Li and Ca are in the
8c sites. At 4.590 THz, the highest longitudinal acoustic (LA) and
the lowest transverse optical (TO) branches have a band cross at
the ð0:435; 0:0; 1:0Þ 2πa point along the W–X high-symmetry path
Fig. 2b. Interestingly, the phononic spectra around this crossing
point exhibit a Weyl cone-like shape in both qxy and qyz planes,
as shown in Fig. 2d, e. To further confirm its topological nature,
the Wannier center evolution has been derived for the third
phononic band (Fig. 2f). It gives a topological charge of −1 and
this crossing point acts like the sink of Berry curvatures in
Fig. 2g. These results indicate that the crossing point along the
X–W path is an ideal type-I Weyl TP with the topological charge
of ±1.

To elucidate the underlaying physics for the type-I Weyl TPs in
LiCaAs, we constructed the Hamiltonian from Eq. (1) according
to the fact that LiCaAs possesses both the TRS T and the twofold
rotational symmetry C2. As shown in Fig. 2d, e, the type-I WPs do
not have the tilt term (expressed as d0σ0 in Eq. (1)). Combining T
and Cz

2 symmetries, the operator can be represented by σzκ
(where κ is the complex conjugate operator). The Hamiltonian

Hð�Cz
2qÞ ¼ Cz

2THðqÞT�1Cz�1
2 ; ð3Þ

should be subject to the following constraints.

d 1ðqx; qy;�qzÞ ¼ �d1ðqx; qy; qzÞ;
d2;3ðqx; qy;�qzÞ ¼ d2;3ðqx; qy; qzÞ;

ð4Þ

where they require qz ¼ 2πn
a . When qz ¼ 2π

a (see Fig. 2c), the
crossing points on the square plane at the BZ’s boundary satisfy
Eq. (4) and d1 has to be 0. We further consider the other two
rotational symmetries, Cx

2 and Cy
2, at the condition of qz ¼ 2π

a . It
gives

d2;3ðqx;�qyÞ ¼ �d2;3ðqx; qyÞ ð5Þ
or

d2;3ð�qx; qyÞ ¼ �d2;3ðqx; qyÞ ð6Þ
This condition implies that the crossing points on the square

plane (qz ¼ 2π
a ) are constrained to the high-symmetry lines along

either qx or qy direction. As a result, the type-I Weyl TPs on the
W–X line of the BZ boundary are protected by both C2 and T
symmetries, which can produce well-separated WPs and give rise
to the extremely long open arcs on the surface. The topologically
protected surface states of (111) surface along high-symmetry line
have been derived in Fig. 2h and the Weyl points marked as the
red and yellow spheres are projected on the �L–�X line. The open
surface arcs have also been clearly observed at 4.43 and 4.50 THz
(Fig. 2i, j), respectively. Each pair of projected Weyl points with
opposite charges is clearly connected by the open surface arc,
which is long enough and can provide a robust one-way phonon
propagation channel on the surface without backscattering from
defects. To our best knowledge, the Weyl TPs in LiCaAs exhibit
two unique features different from the known Weyl TPs. First,
this type-I Weyl point is the only phononic band crossing
between the LA and TO branches. Second, it is the only known
clean Weyl TP, which doesn’t overlap with any other phonon
branches. The calculations further reveal that the family of half-
Heusler AIBIIXV compounds host similar Weyl TPs and their
nontrivial long arc surface states. These materials are suitable for

Fig. 2 Phonon dispersion and single Weyl TPs of LiCaAs. a The unit cell and primitive cell of LiCaAs (space group F�43m 216). b The phonon dispersion
along the high-symmetry lines. The blue circles denote the phononic crossing points (the single Weyl TPs). c The bulk BZ and the (111) surface BZ. d, e The
3D phonon dispersions centered at the Weyl point on the qxy and qyz planes, respectively. f, g The Wannier center evolution and Berry curvatures
distributions around this Weyl phonon. h The surface phononic states along the high-symmetry lines. The red and yellow circles represent the projected
Weyl TPs with positive and negative topological charges of 1 and −1, respectively. i, j the Weyl phonon induced nontrivial surface phononic arc states at
4.50 and 4.43 THz, respectively.
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detecting both single Weyl TPs and nontrivial long arc surface
phonons by experiments.

High degenerate Weyl TPs in noncentrosymmetric super-
conductor BeAu. High degenerate Weyl points refer to the
nontrivial crossings, which have a degeneracy higher than two.
Our screening has found the existence of threefold and fourfold
nontrivial high degenerate Weyl points in 447 TP materials (see
Supplementary Table 4). For threefold degenerate Weyl TPs, the
Hamiltonian can be written as H3(k) ∝ q ⋅ S, where q is a
wavevector and Si are the rotation generators for spin-1 bosons.
Those three bands at the crossing point will have the Chern
numbers of +2, 0, and −2 and they are also called “spin-1 Weyl
point”24. For fourfold degenerate Weyl TPs, their Hamiltonian
can be written as H4(k)~I2⨂(q ⋅ σ), where I2 is the second-order
identity matrix and σi(i= x, y, z) are the three Pauli matrices.
Those high degenerate Weyl TPs can be regarded as the sum of
identical spin-12 Weyl points and they can be called “charge-2
Dirac point”24 due to their Chern numbers.

Among 447 TP materials with high degenerate Weyl TPs,
BeAu is a typical noncentrosymmetric superconductor with a
critical temperature of 3.2 K (ref. 65). BeAu crystallizes in a cubic
B20 structure with the space group of P213 (no. 198). Both Be and
Au atoms are located at 4a Wyckoff sites (Fig. 3a). The phonon
spectrum along the high-symmetry lines in Fig. 3b shows six
threefold degenerate Weyl TPs (blue circles at Γ) and six fourfold
degenerate Weyl TPs (green circels at R). These high degenerate

Weyl TPs are protected by both the lattice symmetries (twofold
screw rotations and threefold rotations) and TRS. To determine
their topological natures, we calculate the Chern numbers for
high degenerate Weyl TPs at both Γ and R in the BZ (Fig. 3c, d).
The Chern numbers for threefold degenerate Weyl TPs are −2, 0,
and 2, while those are ±2 for fourfold degenerate Weyl TPs. For
the Weyl TPs at Γ, we can derive its Wannier center evolutions
because of the well-separated bands. The threefold degenerate
Weyl TPs in Fig. 3c are contributed from three phonon branche
nos. 10, 11, and 12. As shown in Fig. 3f, the Wannier center
evolutions for those three branches indicate that both nos. 10 and
12 bands are topologically nontrivial, whereas no. 11 band is
trivial. This fact reveals that the threefold degenerate point is
similar to a single Weyl point. However, it has a high topological
charge of +2 and the corresponding Berry curvatures at qxy plane
give the source behaviors at Γ (ω= 3.669 THz), which is
protected by the twofold screw rotation axis at Γ in the BZ.
The fourfold degenerate Weyl TPs in Fig. 3d are contributed from
two doubly degenerate bands, with the Chern numbers, c= ±2.
These fourfold degenerate Weyl TPs at R have the topological
charge −2, which is also protected by the twofold screw rotation
axis at R. Both the threefold and fourfold degenerate Weyl TPs
have the opposite topological charges, indicating the conservation
of the topological charges for Weyl TPs in the first BZ.
Meanwhile, as shown in Fig. 3h, we have derived the topological
nontrivial surface TPs along the high-symmetry lines on the (001)
surface. Clearly, the topological nontrivial surface states connect
both threefold and fourfold degenerate Weyl TPs at Γ and M.

Fig. 3 Phonon band structures and surface states for topological high degenerate Weyl TPs in BeAu. a The crystal structure of BeAu (space group
P213 198). b The phonon dispersion along the high-symmetry lines. The blue circles are the threefold degenerate Weyl TPs at Γ and the green circles are
the fourfold degenerate Weyl TPs at R. c Threefold degenerate Weyl point of 3.669 THz at Γ. d Fourfold degenerate Weyl TPs of 3.956 THz at R. e Bulk and
surface BZ of BeAu. f The Wannier center evolution for three branches 10, 11, and 12 centered at the Γ. g The Berry curvature distributions of three
branches 10, 11, and 12 at the centered Γ. h The surface local density of states for (001) surface along the high-symmetry directions. i, j The corresponding
surface arcs at 3.65 and 3.55 THz, respectively. Even though BeAu exists in reality, we still found that around Γ point one acoustic branch of BeAu shows
the extremely small imaginary frequency, which cannot be removed in our current calculations, possibly due to misconsideration of long range interatomic
interaction in the force constant construction or anharmonic effects.
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Consequently, it can be clearly seen that two long arcs connect
the projected double Weyl points at center-�Γ and corner- �M, and
those surface arcs are constrained by the TRS. The nontrivial
open arc phononic surface states can be used to design the ideal
negative refraction materials and this concept was recently
realized in macroscopic metamaterials of Weyl phononic
crystal66.

Nodal-line (ring) TPs in centrosymmetric ScZn. Nodal-line
(ring) TPs, formed by continuous phononic band crossings, have
also been predicted in phonon spectra of materials30–34. Our
results suggest that many materials exhibit such nodal-line (ring)
TPs. Here, we introduce ScZn, with a B2 lattice structure (see
Fig. 4a), that hosts both nodal-ring and straight line TPs as shown
in Fig. 4c.

Firstly, we have noted that the phononic band crossing point
between LA and TO on the X–M line of the BZ (Fig. 4c). Unlike
the single Weyl TP in LiCaAs, this crossing is not an isolated
point, but belongs to a closed ring formed by the continuous
linear band crossings, as shown in Fig. 4e, f. The occurrence of the
nodal-ring TPs in ScZn can be attributed to the presence of the
PT symmetry. Considering the mirror symmetry, ScZn totally
hosts six nodal-ring TPs, which are located at the boundary
planes of the BZ surrounding the M point in Fig. 4b. Secondly,
the nodal-line TPs have been observed along the Γ–X and the Γ–R
directions, as shown in Fig. 4c. They can be viewed as countless
linear band crossings along the high-symmetry lines and extend
through the whole BZ, as illustrated in Fig. 4d, similar to MgB2
(ref. 31). In particular, our further studies reveal that the nodal-
ring TPs centered at theM point and the nodal-line TPs along the
high-symmetry directions in ScZn are both protected by the PT
and mirror symmetries. For inversion symmetry P, we can

introduce the inversion operator as bP ¼ σz to Eq. (1) to satisfy

HðbPqÞ ¼ bPHðqÞbP�1
: ð7Þ

We can simplify this equation into the following relations

d1;2ð�qÞ ¼ �d1;2ðqÞ
d0;3ð�qÞ ¼ d0;3ðqÞ

ð8Þ

which lead to that d1,2(q) are odd functions of q, and d0,3(q) are
even functions. Furthermore, the operator of the TRS can be
written as κ (a complex conjugate operator for the spinless case).
It needs to mention that H(q) and T are to be commutable,
[H(q), T]= 0, which requires that

HðTqÞ ¼ THðqÞT�1 ð9Þ
Substituting T with κ leads to

d0;1;3ð�qÞ ¼ d0;1;3ðqÞ
d2ð�qÞ ¼ �d2ðqÞ

ð10Þ

where d0,1,3(q) are even functions and d2(q) is an odd function of
q. Due to the PT symmetry from above two equations, we can
obtain that d1(q)= 0, d2(q) is an odd function and d0,3(q) are
even functions of q. Ignoring the terms greater than the third
power, di(q) can be the followings,

d2ðqÞ ¼
X
i¼x;y;z

αiqi;

d3ðqÞ ¼ bþ
X
i¼x;y;z

βiq
2
i :

ð11Þ

At this stage, the eigenvalues of Eq. (2) can be simplified

to ωðqÞ ¼ d0 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d22 þ d23

q
and the band crossing points

Fig. 4 Phonon band structures and topological properties of phonon of ScZn. a The crystal structure of ScZn (space group Pm�3m 221). b The BZ of ScZn
and the illustration of the nodal-ring TPs (red curve). c The phonon spectrum of ScZn. d The illustrations of the straight nodal-line TPs along the Γ–R and
Γ–X lines in ScZn. e, f are the 3D phonon bands around the nodal-line TPs surrounding the M point. g, h The derived phononic surface states at the
frequencies of 4.12 and 4.05 THz, respectively, of the (001) surface BZ (as defined in b). i The surface phononic spectrum of the (001) surface. j, k The
phononic surface states at the frequencies of 3.60 and 3.55 THz, respectively.
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require d2(q)= d3(q)= 0. Here, we take the nodal-ring TPs
centered at M as an example to elaborate the role of the
mirror symmetry. First, d2(q)= αxqx+ αyqy+ αzqz= 0 can
determine a plane passing the central point of the circle and
the d3(q)= b+ βxq

2
x + βyq

2
y + βzq

2
z = 0 is an equation of an

ellipsoidal surface centered at M. The crossings between the plane
and the ellipsoidal surface form a closed loop, which is the nodal
ring centered at M. However, this nodal ring can tilt to arbitrary
direction. Here, we can choose the mirror symmetry as cMz ¼ σz
to give an additional constraint to the Hamiltonian,

HðcMzqÞ ¼ cMzHðqÞcMz
�1 ð12Þ

Using σz to replace cMz , we can obtain the following expressions
constrained by mirror symmetry

d1;2ðqx; qy; qzÞ ¼ �d1;2ðqx; qy; 1� qzÞ;
d0;3ðqx; qy; qzÞ ¼ �d0;3ðqx; qy; 1� qzÞ:

ð13Þ

Therefore, the M-centered nodal-ring TPs can be confined to
the plane of qz= π. For nodal-line TPs, the mirrors can also
constrain them along one high-symmetry line. Since the nodal-
line TPs possess nonzero Berry phases, there exist phononic
nontrivial drumhead-like surface states. To elucidate this feature,
we have calculated the phonon spectrum on the (001) surface
with Green’s function method in Fig. 4i. It shows the nontrivial
surface states along the �Γ–�X line and the �X– �M line, respectively.
When the bulk phonons are projected to the (001) surface, the
nodal-ring TPs, perpendicular to the qz direction, can hold co-
dimensions, which form a closed circle around the �X point, as
illustrated in Fig. 4b. Within the projected nodal-ring TPs, the
nontrivial drumhead-like surface states form closed loops around
the �X point, which evolve with the phonon frequency (Fig. 4g
with ω= 4.12 THz and Fig. 4h with ω= 4.05 THz). When the
straight nodal-lines are projected onto the (001) surface, they are
still along the high-symmetry paths to form the triangle region on
the surface 2D BZ in Fig. 4d. Within this region, the nontrivial
drumhead-like surface phononic states would occur. The
nontrivial drumhead-like surface states induced by straight nodal
lines are between 3.55 and 4.00 THz, and they connect two points
on the neighboring projected straight nodal lines, as shown in
Fig. 4j, k.

Our HT calculations further reveal that 114 CsCl-type
materials isostructural to ScZn exhibit very similar phonon
dispersions (see Supplementary Table 1). All of them host the
nodal-line TPs within their acoustic branches along the Γ–X
and Γ–M lines, but only some of them host nodal-ring
TPs between the LA and TO branches. The existence of the
nodal-ring TPs depends on the relative atomic masses of
the constituents in compounds. If the atomic masses differ
greatly, the nodal-ring TPs at zero acoustic-optical gap will
disappear.

Hourglass nodal-net TPs in centrosymmetric TeO3. Besides the
above nodal-line (ring) TPs associated with the symmorphic
symmetries, the nonsymmorphic space groups can produce the
symmetry-enforced nodal-line (ring) TPs. Nonsymmorphic sym-
metries are formed by combining the operations of the point group
g and translations t by fraction. TeO3 is such a case, which crys-
tallizes in the Pnna space group (no. 52)67. In its unit cell, there are
four Te atoms and each of them forms the TeO6 octahedra
(Fig. 5a). In this space group, six nonsymmorphic symmetries
are present as follows: g1= {Mz∣a/2}, g2= {My∣a/2+ b/2+ c/2},
g3= {Mx∣b/2+ c/2}, g4= {C2y∣a/2+ b/2+ c/2}, g5= {C2z∣a/2}, and
g6= {C2x∣b/2+ c/2}. Our results reveal that TeO3 possesses the
HNN TPs in its phonon dispersion in Fig. 5b. To show the key

feature of the HNN TPs, here we focus on the four phonon
branches (bands 25, 26, 27, and 28) with a frequency range from
12 to 14 THz. These four bands form two nodal-line TPs (marked
in blue in Fig. 5b) along the boundaries of the BZ (Fig. 5c). The
occurrence of those nodal-line TPs are protected by the crystal
symmetries. By combining the TRS T and g1= {Mz∣a/2}, the lattice
momentum can be transformed to

g1 : ðqx; qy; qzÞ ! ðqx; qy;�qzÞ;
T : ðqx; qy;�qzÞ ! ð�qx;�qy; qzÞ:

This joint operation can be expressed as eT ¼ g1T , which
commutes with Hamiltonian H(q) at q= (0, 0, qz). Under
the glide reflection operation g1, for invariant lines or planes
satisfying g1q= q, the Bloch states can be eigenstates

g1 u±
q

��� E
¼ ± λeiq�t u ±

q

��� E
. Due to the spinless nature of phonons,

T2= 1 cannot produce the Kramers-like degeneracy and λ
should be ±1. This means that the momentum q-dependent
eigenvalues of g1 are ±eiqx=2. Under above conditions, T2 ≡ 1 and

g21 ¼ eiqx , the Kramers-like degeneracy(eT2 ¼ �1) can be realized
when qx= π. It means that symmetry protected nodal lines
should emerge along the high-symmetry X–U (π, 0, qz) and S–R
(π, π, qz) lines. Similarly, g2T and g3T operations can enforce
phononic band degeneracy (for the nodal-line occurrence) along
the high-symmetry Z–T, R–S, Z–U, and Y–S lines of the BZ (see
Fig. 5c). The operation of the screw rotation g4 guarantees the
band degeneracy at any point on the qy= π plane, which implies
the occurrence of the phononic nodal surface, as outlined in
orange in Fig. 5c. In addition to the occurrence of phononic
nodal line and nodal surface, we note that in three high-
symmetry Γ–X, Y–X, and U–R lines, the twofold degenerate
phononic bands further split into the hourglass nodal
points68–70 (see blue and orange solid circles in Fig. 5b).

It needs to be emphasized that the hourglass nodal points
(Fig. 5b) are protected by crystal symmetries. Here, we focus
on the hourglass nodal point along the U–R line in qx= π
plane (XURS) to elucidate the role of nonsymmorphic symme-
tries. For the operation g3= {Mx∣b/2+ c/2}, the eigenvalues are
g±(qy, qz)= ±eðiqy=2þiqz=2Þ. Hence, at the point U(π, 0, π), the
degenerate phonon points have opposite eigenvalues (±i).
Similarly, for the point R(π, π, π), the eigenvalues would be +1
or −1. However, the g4T operator protects the band degeneracy of
the S–R line and it commutes with g3 at the R point, which leads
the same eigenvalues, (+1, +1) or (−1, −1) for the degenerate
phonon bands at R. As a result, from U to R, phonon bands have
to switch partners and inevitably cross each other, which causes
the occurrence of the hourglass phonon bands in Fig. 5d.
Interestingly, this hourglass phonon nodal point is not an isolated
one and there exists an hourglass nodal ring on the XURS plane.
As illustrated by the black curve starting from the S point in
Fig. 5c, the hourglass nodal point along the U–R line is a point on
this ring. To clearly visualize the shape of the hourglass phonon
nodal ring, we plot the two crossing phononic bands on the XURS
plane in Fig. 5e. Because the start and end points of this nodal
ring are at the same point S in the corner of BZ, this hourglass
nodal ring can form the hourglass nodal chain (HNC; see the blue
curve in Fig. 5g), which goes through the whole BZ along the qz
direction. Similarly, the HNC can also be observed on the qz= 0
plane (ΓXSY). For the glide reflection operation g1, the
eigenvalues of g1 are ±eiqx=2. The eigenvalues at X(π, 0, 0) and
Y(0, π, 0) can be identified to ±i and ±1, respectively. Since the
twofold screw axis g4 commutes with g1, the eigenvalues at Y can
be confirmed to be (+1, +1) or (−1, −1), while the X point holds
the opposite eigenvalues (+i, −i), as shown in Fig. 5h. Hence, the
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hourglass nodal point appears along the X–Y line. On the ΓXSY
plane, the similar hourglass nodal points appear to form a closed
ring also starting from the S point (see the red curve in Fig. 5c).
Thus, the HNC can also be observed in the extended BZ (see the
red curve in Fig. 5g), which also goes through the whole BZ on
the qz= 0 plane. In particular, both HNCs originating from S are
perpendicular to each other which form the HNN as shown in
Fig. 5g, h.

Furthermore, the topological nontrivial surface states have
been calculated on the (001) and (100) surfaces. Due to the co-
dimension rule71, the surface states of the HNC on qz= 0 plane
can be obtained on the (001) surface, whereas the surface states of
the HNC on the qx= π plane emerge on the (100) surface. As the
feature of nodal rings, the drumhead-like surface states can be
observed inside or outside the projected region of HNCs, which
are determined by the region with nonzero Berry phase32. As
shown in Fig. 5i, j, the nontrivial surface states occurs outside
the projected HNC on the (001) surface (Fig. 5i), while the
drumhead-like surface states appear inside the HNC on the (100)
surface (Fig. 5j). HNNs are protected by the nonsymmorphic
symmetry and can be extremely stable. Due to the diversity of
crystal symmetries, more interesting topological phonon nodal
lines or rings can be expected.

Discussions
From our HT analysis, we have systematically classified those TP
materials into two main categories of Weyl TPs and nodal-line
(ring) TPs. Nodal-line (ring) TPs accounted for the largest
number of TPs. Among 5014 TP materials, 4978 materials exhibit
nodal-line (ring) TPs (in Supplementary Tables 3–5). Figure 6
shows the schematic relations between different types of TPs. As
shown in Fig. 6c, nodal-ring TPs can be visualized as continuous
crossings of two phononic bands forming a closed loop. Non-
trivial drumhead-like surface states, the key feature of topological
nature, can be observed when the bulk nodal-ring TPs are pro-
jected onto a given surface. These nodal-line (ring) TPs can
further evolve into various nodal-link, nodal-chain, or nodal-net
TPs, if some crystal symmetries (e.g., mirror or screw symme-
tries) are combined with the PT symmetry. Here, we elucidate the
evolution of cases of the nodal-link and nodal-net TPs. Once the
mirror symmetry (M) is added into the PT symmetry, it is pos-
sible to obtain various nodal-link TPs. When the crystal hosts two
noncoplanar nodal rings protected by two mirrors, two perpen-
dicular nodal rings can pass through the inside of each other and
form the Hopf-link TPs by hooking each other, as shown in
Fig. 6d. The Hopf-link semimetal states of Fermions have been
predicted in Co2MnGa (ref. 72) and the phononic counterpart

Fig. 5 Hourglass nodal-net TPs of TeO3. a The unit cell of TeO3 (space group Pnna 52). b The phonon dispersion of TeO3. c The bulk BZ and the (001) and
(100) surface BZs. Both the red and black arrows denote the hourglass nodal-line TPs, whereas the blue lines along the BZ boundary represent the twofold
degenerate nodal-line TPs. All points on the qy= π plane are twofold degenerate nodal points (called twofold degenerate nodal surface), as shown in the
yellow plane. d The phonon spectrum along X–U–R–S–X at the qyz plane. The eigenvalues of {Mx∣b/2+ c/2} are given at both U and R points. e The 3D
phonon dispersions at the qyz plane. The solid white line represents the hourglass nodal line on which any point represents a hourglass nodal point. f The
phononic hourglass nodal dispersions protected by g1 and g4. The eigenvalues of {Mz∣a/2} are given at both Y and X points in the BZ. g Hourglass nodal
chains (HNCs) at the qxy plane (red solid lines) and at the qyz plane (blue solid lines). Both these HNCs connect to each other only at the S point to form an
hourglass nodal net (HNN) in the extended BZ. h The shape of the HNN in the three-dimensional view. Two black circles are used to calculate the Berry
phase of the HNCs and the color represents the energy dispersion of the HNN in THz. i, j The phononic surface states along the high-symmetry lines for
the (001) and (100) surfaces, respectively.
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can also be realized. Once the nonsymmorphic symmetry (g) is
combined with the PT symmetry, it is possible to obtain various
nodal-net TPs, comprised by continuous nodal-line (ring) TPs.
As discussed in TeO3, the nonsymmorphic symmetry (g) can
induce the hourglass nodal points, which can form the nodal
chain in the extended BZ. Those HNCs share the same vertex
with the one in the vertical plane and the HNN can be obtained as
shown in Fig. 6e. Currently, we have identified 15 HNN TP
materials (Supplementary Table 6). HNN and Hopf-link TPs still
exhibit the drumhead-like surface states that are similar to nodal-
ring TPs (Fig. 6d, e). Moreover, due to the diversity of both g and
M symmetries, more interesting and nontrivial TPs forming by
nodal-line (ring) TPs can be discovered.

Furthermore, these nodal-line (ring) TPs can be split into Weyl
TPs once its P symmetry is broken. Considering the degenerate
degree of the nontrivial crossings, Weyl TPs can be categorized
into single Weyl TPs (see Fig. 6a) and high degenerate Weyl TPs
(see Fig. 6b). The single Weyl TPs can appear at arbitrary
momentum positions, while the high degenerate Weyl TPs must
stay at the high-symmetry points protected by the screw sym-
metry. When the single Weyl TPs are projected onto the surface,
one open arc will connect those TPs with opposite charge, as
shown in Fig. 6a. Due to the high topological charge feature of
high degenerate Weyl TPs, multiple open arcs can be observed,
which originate from the projected Weyl nodes, as shown in
Fig. 6b. For instance, in BeAu, the projected Weyl node of the
threefold degenerate Weyl TPs is connected by two open arc
states. Interestingly, our calculations predicted 36 materials only
for single Weyl TPs (Supplementary Table 2), 463 materials for
mixed single Weyl TPs and nodal-line (ring) TPs, and 266
materials for mixed single Weyl, high degenerate Weyl and
nodal-line (ring) TPs (Supplementary Table 4), and 181 materials
for mixed high degenerate Weyl and nodal-ling (ring) TPs.

When a large set of TP materials data is available, one can
expect a variety of new phenomena by manipulating chemistry
and structure. Therefore, the researches on TPs certainly deserve
to be exploited further.

First, those TP materials can be modulated by the pseudos-
pins36,73 and pseudo-SOC74,75 from the crystalline symmetry and
pseudoangular momenta. Phonon Hall effect62,76,77 has been
experimentally observed in a paramagnetic insulator, which can
be applied to ballistic thermal transport35 and Berry-phase-
induced heat pumping78. When the P symmetry is broken, a pair
of valley polarized boundary states with a locked valley-
momentum can lead to the phonon quantum valley Hall

effect36, with potential applications as the phonon valley filter79,
phononic antennas80, and negative refractive index materials66.
When the TRS is broken, the phonon quantum anomaly Hall
effect (QAHE) can be realized by introduction of ionic lattices by
the Lorentz force on charge ions35,81, magnetic lattices by the
Raman-type spin–lattice interaction35,62, or a Coriolis/magnetic
field46,82. The phonon QAHE hosts the one-way edge states
which are immune to scattering from defects, and this unique
state can be used for novel phonon devices, such as phonon
diodes and waveguides38,46,83,84, acoustic delay lines85, thermal
rectification44,86–88, and dissipationless phononic circuits38,89,90.

Second, TPs can also enhance the thermoelectric properties of
materials. The thermoelectric performance is determined by the
thermal power of merit, zT ¼ S2σ

κeþκl
, where S is the Seebeck coef-

ficient, σ is the electrical conductivity, and κe and κl are the
electronic and phononic contributions to thermal conductivity.
To improve zT, we can either decrease the overall κe/κl values or
increase S. For an undoped material, it is difficult to reduce κe
since it is related to σ according to the Wiedemann–Franz law91.
Therefore, a more realistic approach is to decrease κl caused by
phonons traveling through the lattice. Different from the non-TP
materials, the gapless topological phonon modes in the TP
materials can provide more scattering channels in the three
phonon–phonon scattering processes to decrease the mean free
path and suppress the κl (ref. 41). Furthermore, it is still likely that
the TPs and topological electrons can coexist in the same mate-
rial, because the topological properties are governed by the crystal
symmetry23,33,92,93. Since the enhancement of electronic DOS can
increase S, one can design the topological electronic materials
with nodal points near Fermi level to optimize the figure of merit
in combination with TPs for suppressing the κl. In addition, the
clean TPs’ surface states can enhance the electron–phonon cou-
pling and possibly trigger the topological superconductivity at the
surfaces or interfaces21,93,94.

Third, TPs can be physically detected at the whole phonon
spectrum by using the techniques, such as infrared spectro-
scopy95, x-ray scattering96, Raman techniques97, and inelastic
neutron scattering98,99. Recently, two inelastic x-ray scattering
studies have been applied to detect the topological phonons in
FeSi and MoB2 (refs.34,40). However, it is far more challenging to
characterize the surface phonons because X rays have only a
penetration depth of the micron scale. For the surface phonons,
several techniques, such as helium scattering100, terahertz
polarimetry101,102, and high-resolution electron energy loss
spectroscopy (EELS)103,104, can be applied. In particular, the

Fig. 6 The schematic relations between different types of TPs. a Single Weyl TPs in the open arc states. b High degenerate Weyl TPs in the arc surface
states. c Nodal-ring (line) TPs in drumhead-like surface states. d Hopf-link TPs in nontrivial surface states. e Nodal-net TPs (e.g., HNN) and their
corresponding drumhead-like surface states.
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lattice vibrations of Beð1010Þ and Be(0001) surfaces have been
successfully measured from EELS105,106. While the experimental
characterization of surface phonons for a single material remains
challenging, our current work can undoubtedly facilitate this
research by providing over 300 ideal candidate materials for
experimental verification.

In summary, we have developed a HT and data-driven
approach to evaluate the TPs in over 10,000 materials, using
the existing phononic database and our in-house calculations.
Our screening suggests that TP states are universally present,
highlighting extensive possibilities for realizing TPs in a variety of
materials toward different potential applications. We expect more
topological bulk phonons and nontrivial edge states to be detected
by experiments in near future. As such, many exciting phenom-
ena, such as topological superconductivity and high thermoelec-
tricity, may be realized by utilizing the topological phonons in
those identified TP materials.

Methods
Phonon calculation. All DFT calculations have been performed by Vienna ab
initio simulation package, based on the projector augmented wave potentials and
the generalized gradient approximation within the Perdew-Burke-Ernzerhof for the
exchange correlation treatment. The force constants downloaded from the PHO-
NONPY database were calculated by the finite displacement method. For the in-
house phonon calculations, we used the density function perturbation theory. We
performed the geometry optimization of the lattice constants by minimizing the
forces within 0.001 eV/Å. The cutoff energy for the expansion of the wave function
into the plane waves was set to 1.5 times of the ENMAX in the POTCAR. For the
topological analysis, we used the conjugate gradient method in SciPy107 to get the
crossings, and calculated the Berry phase and Chern number to identify the
nontrivial topological natures. To determine the topological charge, the Wilson-
loop method108,109 was chosen. A sphere centered at a WP was sliced into inde-
pendent orbitals by a constant polar angle θ and the evolution of Wannier centers
(phase factor ϕ) on orbitals can give topological charges of WPs. For the surface
DOS, we used force constants as tight-binding parameters to construct surface and
bulk Green’s functions, and the imaginary part of the Green’s function produces
the DOS110,111.

Data availability
We have provided a Supplementary Material including 14,248 pages and 5014 figures to
classify all 5014 TP materials according to the geometrical character and the Berry phases
of topological nodal points (Weyl node, Dirac node, and high degenerate nodal points)
and nodal-line (ring) TPs. Each material entry includes the spatial information of the
points (e.g., x, y, z coordinates, frequencies, modes, and band paths), and multiplicity,
degeneracy, and topological charges to each phononic band crossing points. These data,
together with the interactive visualization of atomic structures and phonon band
dispersion, are also available, if requested. In addition, we have constucted the
corresponding online database, available at www.phonon.synl.ac.cn or https://tpdb.
physics.unlv.edu/.

Code availability
In order to effectively and conveniently analyze topology of phonons, we developed an
HT-TPHONON code to automate all processes (as shown in Fig. 1) and connect them
with the DFT calculations based on Python scripting. All codes used in this work are
either publicly available or available from the authors upon reasonable request.

Received: 10 June 2020; Accepted: 21 January 2021;

References
1. Kane, C. L. & Mele, E. J. Quantum spin hall effect in graphene. Phys. Rev. Lett.

95, 226801 (2005).
2. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin hall effect and

topological phase transition in hgte quantum wells. Science 314, 1757–1761
(2006).

3. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys.
Rev. B 76, 045302 (2007).

4. König, M. et al. Quantum spin hall insulator state in hgte quantum wells.
Science 318, 766–770 (2007).

5. Hsieh, D. et al. A topological dirac insulator in a quantum spin hall phase.
Nature 452, 970–974 (2008).

6. Xia, Y. et al. Observation of a large-gap topological-insulator class with a
single dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).

7. Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological
classification of crystalline insulators through band structure combinatorics.
Phys. Rev. X 7, 041069 (2017).

8. Slager, R.-J., Mesaros, A., Juričić, V. & Zaanen, J. The space group
classification of topological band-insulators. Nat. Phys. 9, 98–102 (2013).

9. Vergniory, M. G. et al. A complete catalogue of high-quality topological
materials. Nature 566, 480–485 (2019).

10. Zhang, T. et al. Catalogue of topological electronic materials. Nature 566,
475–479 (2019).

11. Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for
topological materials using symmetry indicators. Nature 566, 486–489 (2019).

12. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108,
140405 (2012).

13. Wang, Z. et al. Dirac semimetal and topological phase transitions in a3bi
(a=na, k, rb). Phys. Rev. B 85, 195320 (2012).

14. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological
semimetal and fermi-arc surface states in the electronic structure of
pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

15. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase
in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5,
011029 (2015).

16. Huang, S.-M. et al. A weyl fermion semimetal with surface fermi arcs in the
transition metal monopnictide taas class. Nat. Commun. 6, 7373 (2015).

17. Li, R. et al. Dirac node lines in pure alkali earth metals. Phys. Rev. Lett. 117,
096401 (2016).

18. Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and
three-dimensional dirac line node in zrsis. Nat. Commun. 7, 11696 (2016).

19. Wu, Y. et al. Dirac node arcs in ptsn4. Nat. Phys. 12, 667 (2016).
20. Bian, G. et al. Topological nodal-line fermions in spin-orbit metal pbtase2.

Nat. Commun. 7, 10556 (2016).
21. Li, R. et al. Underlying topological dirac nodal line mechanism of the

anomalously large electron-phonon coupling strength on a be (0001) surface.
Phys. Rev. Lett. 123, 136802 (2019).

22. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
23. Li, J. et al. Coexistent three-component and two-component weyl phonons in

tis, zrse, and hfte. Phys. Rev. B 97, 054305 (2018).
24. Zhang, T. et al. Double-weyl phonons in transition-metal monosilicides. Phys.

Rev. Lett. 120, 016401 (2018).
25. Xie, Q. et al. Phononic weyl points and one-way topologically protected

nontrivial phononic surface arc states in noncentrosymmetric wc-type
materials. Phys. Rev. B 99, 174306 (2019).

26. Liu, J. et al. Ideal type-ii weyl phonons in wurtzite cui. Phys. Rev. B 100,
081204 (2019).

27. Xia, B. W., Wang, R., Chen, Z. J., Zhao, Y. J. & Xu, H. Symmetry-protected
ideal type-ii weyl phonons in cdte. Phys. Rev. Lett. 123, 065501 (2019).

28. Jin, Y., Wang, R. & Xu, H. Recipe for dirac phonon states with a quantized
valley berry phase in two-dimensional hexagonal lattices. Nano Lett. 18,
7755–7760 (2018).

29. Wang, R. et al. Symmetry-protected topological triangular weyl complex. Phys.
Rev. Lett. 124, 105303 (2020).

30. Jin, Y. J. et al. Ideal intersecting nodal-ring phonons in bcc c8. Phys. Rev. B 98,
220103 (2018).

31. Liu, Q.-B., Fu, H.-H., Xu, G., Yu, R. & Wu, R. Categories of phononic
topological weyl open nodal lines and a potential material candidate:
Rb2sn2o3. J. Phys. Chem. Lett. 10, 4045–4050 (2019).

32. Li, J. et al. Topological phonons in graphene. Phys. Rev. B 101, 081403 (2020).
33. Li, J. et al. Phononic weyl nodal straight lines in mgb2. Phys. Rev. B 101,

024301 (2020).
34. Zhang, T. T. et al. Phononic helical nodal lines with PT protection in mob2.

Phys. Rev. Lett. 123, 245302 (2019).
35. Zhang, L., Ren, J., Wang, J.-S. & Li, B. Topological nature of the phonon hall

effect. Phys. Rev. Lett. 105, 225901 (2010).
36. Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer

hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).
37. Liu, Y., Lian, C.-S., Li, Y., Xu, Y. & Duan, W. Pseudospins and topological

effects of phonons in a kekulé lattice. Phys. Rev. Lett. 119, 255901 (2017).
38. Liu, Y., Xu, Y., Zhang, S.-C. & Duan, W. Model for topological phononics and

phonon diode. Phys. Rev. B 96, 064106 (2017).
39. Wang, B. X. & Zhao, C. Y. Topological phonon polaritons in one-dimensional

non-hermitian silicon carbide nanoparticle chains. Phys. Rev. B 98, 165435
(2018).

40. Miao, H. et al. Observation of double weyl phonons in parity-breaking fesi.
Phys. Rev. Lett. 121, 035302 (2018).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21293-2

10 NATURE COMMUNICATIONS |         (2021) 12:1204 | https://doi.org/10.1038/s41467-021-21293-2 | www.nature.com/naturecommunications

http://www.phonon.synl.ac.cn
https://tpdb.physics.unlv.edu/
https://tpdb.physics.unlv.edu/
www.nature.com/naturecommunications


41. Singh, S., Wu, Q., Yue, C., Romero, A. H. & Soluyanov, A. A. Topological
phonons and thermoelectricity in triple-point metals. Phys. Rev. Mater. 2,
114204 (2018).

42. Liu, Y., Chen, X. & Xu, Y. Topological phononics: from fundamental models
to real materials. Adv. Funct. Mater. 30, 1904784 (2020).

43. Winkler, G. W., Soluyanov, A. A. & Singh, S. Topology of triple-point metals.
Chin. Phys. B 28, 77303 (2019).

44. Wang, H. et al. Experimental study of thermal rectification in suspended
monolayer graphene. Nat. Commun. 8, 15843 (2017).

45. Li, B., Wang, J., Wang, L. & Zhang, G. Anomalous heat conduction and
anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard
gas channels. Chaos 15, 015121 (2005).

46. Wang, P., Lu, L. & Bertoldi, K. Topological phononic crystals with one-way
elastic edge waves. Phys. Rev. Lett. 115, 104302 (2015).

47. Serra-Garcia, M. et al. Observation of a phononic quadrupole topological
insulator. Nature 555, 342–345 (2018).

48. Zhang, X. et al. Symmetry-protected hierarchy of anomalous multipole
topological band gaps in nonsymmorphic metacrystals. Nat. Commun. 11, 65
(2020).

49. Xiong, Z. et al. Topological node lines in mechanical metacrystals. Phys. Rev. B
97, 180101 (2018).

50. Cha, J., Kim, K. W. & Daraio, C. Experimental realization of on-chip
topological nanoelectromechanical metamaterials. Nature 564, 229–233
(2018).

51. Lin, Z.-K., Wang, H.-X., Xiong, Z., Lu, M.-H. & Jiang, J.-H. Anomalous
quadrupole topological insulators in two-dimensional nonsymmorphic sonic
crystals. Phys. Rev. B 102, 035105 (2020).

52. Zhang, X. et al. Dimensional hierarchy of higher-order topology in three-
dimensional sonic crystals. Nat. Commun. 10, 5331 (2019).

53. Zhang, X. et al. Second-order topology and multidimensional topological
transitions in sonic crystals. Nature Phys. 15, 582–588 (2019).

54. Zhou, D., Ma, J., Sun, K., Gonella, S. & Mao, X. Switchable phonon diodes
using nonlinear topological maxwell lattices. Phys. Rev. B 101, 104106 (2020).

55. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic
lattices. Nature Phys. 10, 39–45 (2014).

56. Rocklin, D. Z., Chen, B. G., Falk, M., Vitelli, V. & Lubensky, T. Mechanical
weyl modes in topological maxwell lattices. Phys. Rev. Lett. 116, 135503
(2016).

57. Paulose, J., Chen, B. G.-g & Vitelli, V. Topological modes bound to
dislocations in mechanical metamaterials. Nature Phys. 11, 153–156 (2015).

58. Atushi. T. Phonon database at kyoto university. http://phonondb.mtl.kyoto-u.
ac.jp (2018).

59. Petretto, G. et al. High-throughput density-functional perturbation theory
phonons for inorganic materials. Sci. Data 5, 180065 (2018).

60. Hinuma, Y., Pizzi, G., Kumagai, Y., Oba, F. & Tanaka, I. Band structure
diagram paths based on crystallography. Comput. Mater. Sci. 128, 140–184
(2017).

61. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R.
Soc. Lond. A 392, 45 (1984).

62. Sheng, L., Sheng, D. N. & Ting, C. S. Theory of the phonon hall effect in
paramagnetic dielectrics. Phys. Rev. Lett. 96, 155901 (2006).

63. Kieven, D., Klenk, R., Naghavi, S., Felser, C. & Gruhn, T. I-ii-v half-heusler
compounds for optoelectronics: ab initio calculations. Phys. Rev. B 81, 075208
(2010).

64. Montag, B. W., Ugorowski, P. B., Nelson, K. A., Edwards, N. S. & McGregor,
D. S. Device fabrication, characterization, and thermal neutron detection
response of liznp and liznas semiconductor devices. Nucl. Instrum. Meth. A
836, 30–36 (2016).

65. Singh, D., Hillier, A. D. & Singh, R. P. Type-i superconductivity in the
noncentrosymmetric superconductor beau. Phys. Rev. B 99, 134509 (2019).

66. He, H. et al. Topological negative refraction of surface acoustic waves in a weyl
phononic crystal. Nature 560, 61–64 (2018).

67. Persson, K. Materials data on TeO3 (sg:52) by materials project. An optional
note. https://www.materialsproject.org/materials/mp-754658/ (2016).

68. Wang, Z., Alexandradinata, A., Cava, R. J. & Bernevig, B. A. Hourglass
fermions. Nature 532, 189–94 (2016).

69. Parameswaran, S. A., Turner, A. M., Arovas, D. P. & Vishwanath, A.
Topological order and absence of band insulators at integer filling in non-
symmorphic crystals. Nat. Phys. 9, 299–303 (2013).

70. Young, S. M. & Kane, C. L. Dirac semimetals in two dimensions. Phys. Rev.
Lett. 115, 126803 (2015).

71. Zhao, Y. X. & Wang, Z. D. Topological classification and stability of fermi
surfaces. Phys. Rev. Lett. 110, 240404 (2013).

72. Chang, G. et al. Topological hopf and chain link semimetal states and their
application to co2MnGa. Phys. Rev. Lett. 119, 156401 (2017).

73. Zhu, H. et al. Observation of chiral phonons. Science 359, 579 (2018).
74. Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a

mechanical topological insulator. Science 349, 47 (2015).

75. Liu, Y., Xu, Y. & Duan, W. Three-dimensional topological states of phonons
with tunable pseudospin physics. Research 2019, 5173580 (2019).

76. Rikken, G. L., Strohm, C. & Wyder, P. Observation of magnetoelectric
directional anisotropy. Phys. Rev. Lett. 89, 133005 (2002).

77. Inyushkin, A. V. & Taldenkov, A. N. On the phonon hall effect in a
paramagnetic dielectric. JETP Lett. 86, 379–382 (2007).

78. Ren, J., Hanggi, P. & Li, B. Berry-phase-induced heat pumping and its impact
on the fluctuation theorem. Phys. Rev. Lett. 104, 170601 (2010).

79. Chen, X., Liu, Y. & Duan, W. Thermal engineering in low-dimensional
quantum devices: A tutorial review of nonequilibrium green’s function
methods. Small Methods 2, 1700343 (2018).

80. Zhang, Z. et al. Directional acoustic antennas based on valley-hall topological
insulators. Adv. Mater. 30, 1803229 (2018).

81. Holz, A. Phonons in a strong static magnetic field. Il Nuovo Cimento B (1971-
1996) 9, 83–95 (1972).

82. Wang, Y.-T., Luan, P.-G. & Zhang, S. Coriolis force induced topological order
for classical mechanical vibrations. New J. Phys. 17, 073031 (2015).

83. Liu, T.-W. & Semperlotti, F. Tunable acoustic valley–hall edge states in
reconfigurable phononic elastic waveguides. Phys. Rev. Appl. 9, 014001 (2018).

84. Wang, D. et al. Extremely low thermal conductivity from bismuth selenohalides
with 1d soft crystal structure. Sci. China Mater. 63, 1759–1768 (2020).

85. Zhang, Z. et al. Topological acoustic delay line. Phys. Rev. Appl. 9, 034032
(2018).

86. Zhang, L., Wang, J.-S. & Li, B. Ballistic thermal rectification in nanoscale
three-terminal junctions. Phys. Rev. B 81, 100301 (2010).

87. Boechler, N., Theocharis, G. & Daraio, C. Bifurcation-based acoustic switching
and rectification. Nat. Mater. 10, 665–668 (2011).

88. Liang, B., Guo, X. S., Tu, J., Zhang, D. & Cheng, J. C. An acoustic rectifier. Nat.
Mater. 9, 989–992 (2010).

89. Yu, S.-Y. et al. Elastic pseudospin transport for integratable topological
phononic circuits. Nat. Commun. 9, 3072 (2018).

90. Fu, W. et al. Phononic integrated circuitry and spin-orbit interaction of
phonons. Nat. Commun. 10, 2743 (2019).

91. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7,
105–114 (2008).

92. Lv, B. Q. et al. Observation of three-component fermions in the topological
semimetal molybdenum phosphide. Nature 546, 627–631 (2017).

93. Jin, K.-H. et al. Topological superconducting phase in high-tc superconductor
mgb2 with dirac-nodal-line fermions. npj Comput. Mater. 5, 57 (2019).

94. Zhang, S. et al. Role of srtio3 phonon penetrating into thin fese films in the
enhancement of superconductivity. Phys. Rev. B 94, 081116 (2016).

95. Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic
plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotech. 14,
313–319 (2019).

96. Mohr, M. et al. Phonon dispersion of graphite by inelastic x-ray scattering.
Phys. Rev. B 76, 035439 (2007).

97. Thouin, F. et al. Phonon coherences reveal the polaronic character of excitons
in two-dimensional lead halide perovskites. Nat. Mater. 18, 349–356 (2019).

98. Delaire, O. et al. Giant anharmonic phonon scattering in pbte. Nat. Mater. 10,
614–619 (2011).

99. Delaire, O. et al. Heavy-impurity resonance, hybridization, and phonon
spectral functions in fe1−xMxSi(m= Ir, Os). Phys. Rev. B 91, 094307 (2015).

100. Harten, U. & Toennies, J. P. Surface phonons on gaas(110) measured by
inelastic helium atom scattering. Europhys. Lett. 4, 833–838 (1987).

101. Wu, L. et al. Quantized faraday and kerr rotation and axion electrodynamics
of a 3d topological insulator. Science 354, 1124 (2016).

102. Wu, L. et al. High-resolution faraday rotation and electron-phonon coupling
in surface states of the bulk-insulating topological insulator cu0.02bi2se3. Phys.
Rev. Lett. 115, 217602 (2015).

103. Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon
spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).

104. Li, N. et al. Direct observation of highly confined phonon polaritons in
suspended monolayer hexagonal boron nitride. Nat. Mater. https://doi.org/
10.1038/s41563-020-0763-z (2020).

105. Hofmann, P. & Plummer, E. W. Lattice vibrations at the be(1011310) surface.
Surf. Sci. 377, 330–334 (1997).

106. Hannon, J. B. & Plummer, E. W. Shear horizontal vibrations at the (0001)
surface of beryllium. J. Electron. Spectrosc. 64, 683–690 (1993).

107. Virtanen, P. et al. SciPy 1.0–fundamental algorithms for scientific computing
in Python. Nat. Methods 17, 261–272 (2020).

108. Soluyanov, A. A. & Vanderbilt, D. Computing topological invariants without
inversion symmetry. Phys. Rev. B 83, 235401 (2011).

109. Yu, R., Qi, X. L., Bernevig, A., Fang, Z. & Dai, X. Equivalent expression of z2
topological invariant for band insulators using the non-abelian berry
connection. Phys. Rev. B 84, 075119 (2011).

110. Sancho, M. P. L., Sancho, J. M. L., Sancho, J. M. L. & Rubio, J. Highly
convergent schemes for the calculation of bulk and surface green functions. J.
Phys. F Met. Phys. 15, 851–858 (1985).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21293-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1204 | https://doi.org/10.1038/s41467-021-21293-2 | www.nature.com/naturecommunications 11

http://phonondb.mtl.kyoto-u.ac.jp
http://phonondb.mtl.kyoto-u.ac.jp
https://www.materialsproject.org/materials/mp-754658/
https://doi.org/10.1038/s41563-020-0763-z
https://doi.org/10.1038/s41563-020-0763-z
www.nature.com/naturecommunications
www.nature.com/naturecommunications


111. Sancho, M. P. L., Sancho, J. M. L. & Rubio, J. Quick iterative scheme for the
calculation of transfer matrices: application to mo (100). J. Phys. F Met. Phys.
14, 1205–1215 (1984).

Acknowledgements
Work at IMR was supported by the National Science Fund for Distinguished Young
Scholars (grant number 51725103), by the National Natural Science Foundation of
China (grant number 51671193), by the Science Challenging Project (grant number
TZ2016004), and by major research project 2018ZX06002004. Work at UNLV is supported
by Q.Z.’s startup grant. All calculations have been performed on the high-performance
computational cluster in Shenyang National Park and XSEDE (TG-DMR180040).

Author contributions
X.-Q.C. proposed this idea, and both X.-Q.C. and Q.Z. designed the research. J.X. Li,
J.X. Liu, M.F.L., L.W., R.H.L., Y.C., D.Z.L., Q.Z., and X.-Q.C. performed and analyzed the
calculations and contributed to interpretation and discussion of the data. S.A.B., Q.Z.,
J.X. Li and X.-Q.C. coded the online topological phonon database. X.-Q.C., J.X. Li, and
Q.Z. wrote the manuscript. All authors discussed this manuscripts.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-21293-2.

Correspondence and requests for materials should be addressed to Q.Z. or X.-Q.C.

Peer review informationNature Communications thanks Yong Xu and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21293-2

12 NATURE COMMUNICATIONS |         (2021) 12:1204 | https://doi.org/10.1038/s41467-021-21293-2 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-021-21293-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Computation and data driven discovery of topological phononic materials
	Results
	High-throughput screening strategy of topological phonons
	Topological phonons of materials
	Single Weyl TPs in noncentrosymmetric half-Heusler alloys
	High degenerate Weyl TPs in noncentrosymmetric superconductor BeAu
	Nodal-line (ring) TPs in centrosymmetric ScZn
	Hourglass nodal-net TPs in centrosymmetric TeO3

	Discussions
	Methods
	Phonon calculation

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




