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We present GPR_calculator, a package based on Python and C++ programming languages to build an on-
the-fly surrogate model using Gaussian Process Regression (GPR) to approximate computationally expensive 
electronic structure calculations. The key idea is to dynamically train a GPR model during the simulation that 
can accurately predict energies and forces with uncertainty quantification. When the uncertainty is high, the 
costly electronic structure calculation is performed to obtain the ground truth data, which is then used to update 
the GPR model. To illustrate the effectiveness of GPR_calculator, we demonstrate its application in Nudged 
Elastic Band (NEB) simulations of surface diffusion and reactions, achieving 3-10 times acceleration compared 
to pure ab initio calculations. The source code is available at https://github.com/MaterSim/GPR_calculator.

Program summary

Program Title: GPR_calculator
CPC Library link to program files: https://doi.org/10.17632/vyhpdf9fkh.1
Licensing provisions: MIT [1]
Programming language:: Python 3 & C++
Nature of problem: Many atomistic simulations—such as geometry optimization, barrier calculations, molecular 
dynamics, and equation-of-state simulations—require sampling a large number of atomic configurations in a 
compact phase space. While Density Functional Theory (DFT) provides good accuracy and relatively scalable 
performance for systems with fewer than hundreds of atoms, it can become prohibitively expensive for massive 
simulations. This is particularly evident in energy barrier calculations for surface diffusion or reaction studies, 
where hundreds or thousands of energy and force evaluations are needed.
Solution method: The GPR_calculator is an On-the-Fly Atomistic Calculator based on Gaussian Process 
Regression (GPR), designed as an add-on module that can be used with the popular Atomic Simulation 
Environment (ASE). It is essentially a hybrid approach that consists of: (i) a base calculator to provide ground 
truth reference energy and forces for the given input structure, and (ii) a surrogate model serving as the less 
expensive approximation trained on-the-fly. When the uncertainty of the GPR prediction exceeds a user-defined 
threshold, the base calculator is invoked to obtain accurate results and update the GPR model. This adaptive 
approach ensures accuracy while significantly reducing computational cost.
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[1] https://opensource.org/licenses/MIT

1. Introduction

The role of computational modeling approaches has become increas-
ingly important in the design of catalysts. Developing reliable computa-
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tional models requires a fundamental understanding of catalytic surface 
reactions, particularly the relevant elementary steps and their kinetics 
(including the activation barriers and reaction rates). A common ap-
proach to study surface reactions is to identify the minimum energy 
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pathway (MEP), where the energy maximum (saddle point) along this 
path gives the activation barrier. This barrier is then used to calculate 
kinetic rates within the harmonic transition state theory (HTST) frame-
work [1].

In solid state chemistry, the nudged elastic band (NEB) method 
[2–5], with its extension of the solid state phase transition [6–8], is ar-
guably the most popular approach used to search for MEPs. Generally 
speaking, the NEB method is a refinement of the chain of states method 
in which the path between two local minima is initialized as a discrete 
chain of configurations, commonly referred to as images, generated by 
interpolation between the two local minima. The path is then optimized 
by iteratively minimizing an objective function defined as the sum of 
the energies of the images plus a Hookean energy term as a penalty that 
keeps the images distributed along the path through. However, opti-
mization of this objective function tends to lead to corner cutting where 
the spring force perpendicular to the path pulls images off the MEP lead-
ing to over estimation of the activation barrier if the spring constant is 
too large. If the spring constant is too small, the net spring force acts 
to balance the true force (negative gradient of the energies of the im-
ages) parallel to the path making the images slide toward lower-energy 
regions (sliding down) and avoid the activation barrier. NEB alleviates 
the corner cutting and sliding down issues by projecting out the spring 
forces that are perpendicular to the path and the true force components 
parallel to the path during optimization.

In a typical NEB simulation, 5-10 images are used, with their po-
sitions iteratively adjusted during the optimization. Converging to the 
desired MEP often requires hundreds of optimization steps, translating 
to hundreds of energy and force evaluations per image using accurate 
electronic structure methods, most commonly based on density func-
tional theory (DFT). The majority of computational effort is dedicated 
to these DFT calculations. Each electronic structure evaluation typically 
takes tens or even hundreds of CPU minutes, making NEB calculations 
very demanding. Consequently, a single NEB simulation may take sev-
eral hours to days to complete. Furthermore, surface chemical reactions 
often involve multiple elementary steps, each requiring its own NEB 
calculation, further increasing computational costs. However, the accu-
racy of the energy landscape, where most of this computational effort 
is spent, is not the primary concern; rather, the key objective is to iden-
tify the saddle point. Thus, leveraging an approximate energy landscape 
that still enables saddle point identification could significantly reduce 
computational costs.

Over the past several years, various efforts have been made to ac-
celerate NEB simulations by using the surrogate machine learning force 
field (MLFF) models as substitutes for expensive DFT calculations. Pe-
terson et al. [9] developed a neural network (NN) approach using the 
Behler-Parrinello descriptors [10] to represent the local atomic environ-
ment for the images. While this leads to significantly faster simulations, 
it requires an iterative data collection procedure to train the model. Af-
ter the model is built, it lacks an in-time validation mechanism and one 
cannot infer the uncertainty of the simulation results.

Jonsson et al. [11,12] proposed a Gaussian Process Regression (GPR) 
model, where the covariance matrix was constructed using a radial basis 
function (RBF) kernel based on relative Cartesian distances and inverse 
interatomic distances. This approach leverages the uncertainty estimates 
from GPR, selectively adding only the most uncertain images to the 
training dataset, thereby improving the efficiency of data collection. 
However, the model refinement closely follows that of Peterson et al. 
[9], with the key distinction that only the image with the highest un-
certainty estimate from the GPR is added to the training dataset after 
validating the final images in the GPR-optimized MEP against ab initio 
calculations.

Following Jonsson [11,12], several other GPR-based approaches 
have been introduced. In an effort to reduce the amount of training 
data, Torres et al. [13] initiated the GPR training with an image located 
one-third of the way between the initial and final states in the initial 
MEP guess. The GPR is then used to optimize the MEP, and an image 

with either the highest uncertainty or the highest energy along the op-
timized path is selected to update the GPR model. Teng et al. [14,15] 
introduced prior mean functions — either force-field-based or classi-
cal mechanical descriptions — into the GPR, in contrast to the widely 
used zero-mean GPR models. These prior means provide an initial esti-
mate of the energy landscape, improving the performance of the GPR 
model. Furthermore, the prior means are not fixed and can be adjusted 
dynamically throughout the calculation. More recently, Schaaf et al. 
[16] developed a protocol aimed at creating a general MLFF capable 
of accurately predicting a broad range of surface phenomena, including 
molecular adsorption, surface rearrangement, and both single-step and 
multi-step reactions. Before beginning NEB or geometry optimizations, 
the MLFF is trained using molecular dynamics.

Broadly speaking, all these approaches can be categorized as one-

shot MLFF models, where the MLFF is trained using different strategies, 
employed to optimize the MEP and subsequently updated by validating 
the final images against their ab initio calculations. While such one-shot 
MLFFs (either based on NN or GPR models) are becoming increasingly 
popular, they may not be suitable for exploratory simulation tasks that 
demand very high accuracy.

To address this challenge, we propose an on-the-fly approach where 
MLFF models are dynamically updated during NEB calculation thus in-
tegrating both the GPR model and DFT (ab initio) calculations during 
MEP optimization. This approach is inspired by Jinnouchi et al. [17] 
who implemented the on-the-fly strategy to speed up ab initio molecu-
lar dynamics (MD) simulations for the study of phase transition, elec-
trochemical reaction and other complex phenomena. Additionally, we 
integrate our approach with the Atomic Simulation Environment (ASE) 
[18] to ensure compatibility with a wide variety of electronic structure 
calculation methods besides DFT. In the following sections, we will pro-
vide a detailed description of the GPR model and its implementation in 
the GPR_calculator package. We will also demonstrate its applica-
tion in NEB simulations of surface diffusion and reactions, showcasing 
its ability to achieve 3-10 times acceleration compared to pure ab initio 
calculations.

2. Computational methodology

2.1. Gaussian process regression

Suppose we have a set of sample data {𝒙, 𝑌 }, where 𝒙 represents 
the input vector and 𝑌 is the corresponding learning target. The GPR 
model assumes that the target values are drawn from a Gaussian process 
characterized by a kernel function 𝑘(𝒙,𝒙′) [19]. This kernel function 
defines the relationships between input vectors. Among various kernel 
functions, the RBF kernel is widely used and it is defined as:

𝑘(𝒙𝑚,𝒙𝑛) = 𝜃2 exp[−(𝒙𝑚 − 𝒙𝑛)2∕2𝑙2] (1)

Further, the covariance matrix 𝑪 is defined as:

𝑪𝑚𝑛 =𝑪(𝑥𝑚,𝑥𝑛) = 𝑘(𝑥𝑚,𝑥𝑛) + 𝛽𝜹𝑚𝑛, (2)

where 𝛽 is the noise variance, and 𝜹𝑚𝑛 is the Kronecker delta function. 
For 𝑁 samples, 𝑪 is a square matrix of 𝑁 ×𝑁 . Each sample value can 
be considered as the linear combination of these covariances.

𝒀 𝒎 =
𝑁∑
𝑖=1 

𝑮𝛼𝑖𝑪(𝒙𝑚,𝒙𝑖) (3)

Hence, one only needs to determine 𝑮𝛼 from the previous training 
data. However, a computational bottleneck in implementing GP regres-
sion is the 𝑂(𝑁3) computational complexity associated with inverting 
or factorizing the 𝑪 . When 𝑪𝑚𝑛 is smooth, the covariance matrix can 
be expected to be rank-deficient, i.e., its eigenvalues are likely to decay 
rather rapidly. A reasonable rank-𝑀 approximation to 𝑪𝑁 can be ob-
tained by switching off its last 𝑁 −𝑀 eigenvalues to zero. Therefore 
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it is possible to reduce the computational time to in 𝑂(𝑁𝑀2) time, by 
Cholesky factorization of 𝑪 to its lower triangular matrix 𝑳,

𝑪 =𝑳𝑳𝑇 . (4)

And then solve the typical linear equation of 𝑪𝑮𝛼 = 𝒀 from 𝑳.
For a new input 𝑥𝑁+1, 𝑪 can be expanded as follows,

𝑪𝑁+1 =
(
𝑪𝑁 𝒌

𝒌𝑇 𝑐

)
(5)

where 𝑐 = 𝑘(𝑥𝑁+1, 𝑥𝑁+1)+𝛽. And the vector 𝒌 has elements 𝑘(𝑥𝑛, 𝑥𝑁+1)
for 𝑛 = 1,⋯ ,𝑁 .

Thus the mean and variance of the new sample can be derived as:

𝒀 𝑵+𝟏 =𝑪𝑁+1𝑮𝜶 (6)

𝝈2
𝑁+1 = 𝑐 − 𝒌𝑇𝑪−1

𝑁
𝒌 (7)

We can further improve the performance by optimizing 𝜃 and 𝑙 lead-
ing to the maximum log-likelihood (MLL) function. Assuming that the 
Gaussian noise (𝜖𝑛) is applied to the observed 𝒚𝒏,

𝒕𝑛 = 𝒚𝑛 + 𝝐𝑛. (8)

The MLL can be evaluated from the following [19],

ln𝑝(𝒕|𝜃) = −1
2

[
ln det(𝑪𝑵 ) + 𝒕𝑇𝑪−𝟏

𝑵
𝒕+𝑁 ln(2𝜋)

]
(9)

To obtain the best MLL, one can generate multiple trial 𝑙 values and 
then optimize each with the gradient information. In Python program-
ming, this step can be conveniently done by calling the scipy.opti-
mize library and selecting a fast optimization algorithm like L-BFGS-B 
[20].

𝜕

𝜕𝜃
ln𝑝(𝒕|𝜃) = −1

2

[
Tr
(
𝑪−𝟏

𝑵

𝜕𝑪𝑵

𝜕𝜃 

)
− 𝒕𝑇𝑪−𝟏

𝑵

𝜕𝑪𝑵

𝜕𝜃 
𝑪−𝟏

𝑵
𝒕

]
(10)

2.2. Structural descriptor

Recently, several structural descriptors [10,21,22] have been pro-
posed to characterize the local atomic environment by observing the 
translation, rotation and permutation symmetry invariance. Following 
our previous works [23,24], we focus on the use of SO(3) descriptor 
derived from the power-spectrum of spherical harmonic expansion co-
efficients. The main idea here is to use the combined orthonormal radial 
and angular basis functions to reconstruct the smoothed neighbor den-
sity function

𝜌(𝐫) =
𝑟𝑖≤𝑟𝑐∑
𝑖 

𝑓cut(𝑟𝑖)𝑒(−𝛼|𝐫−𝐫𝐢|2) (11)

where 𝛼 (typical chosen as 1-2 Å) is the parameter to control the smooth-
ness of the neighbor density at a given location, and𝑓cut is a cutoff 
function to ensure the density smoothly decays to zero when 𝑟𝑖 ap-
proaches 𝑟𝑐 .

𝑓cut(𝑟) =

{ 1
2

[
cos

(
𝜋𝑟 
𝑟cut

)
+ 1

]
, 𝑟 ≤ 𝑟cut

0, 𝑟 > 𝑟cut

(12)

According to Refs. [21,23,24], the weighted neighbor density func-
tion can be expanded as

𝜌(𝐫) =
∑
𝑛𝑙𝑚 

𝒄𝑛𝑙𝑚𝑔𝑛(𝑟)𝑌𝑙𝑚(�̂�), (13)

where 𝑔𝑛(𝑟) is a set of orthonormal radial basis function derived from 
the polynomials, 𝑌𝑙𝑚 is the spherical harmonics, 𝑟 is the radial distance, 
�̂� is the unit vector of 𝐫. And the expansion coefficients 𝒄𝑛𝑙𝑚 have three 
indices to denote the contributions from radial basis (𝑛) and the spher-
ical harmonics (𝑙 and 𝑚), respectively.

The analytical expression of 𝒄𝑛𝑙𝑚 can be derived as follows,

𝒄𝑛𝑙𝑚 = 4𝜋
𝑟𝑖≤𝑟𝑐∑
𝑖 

𝑓cut(𝑟𝑖)𝑒
−𝛼𝑟2

𝑖 𝑌 ∗
𝑙𝑚
(�̂�𝐢)

𝑟𝑐

∫
0 

𝑟2𝑔𝑛(𝑟)𝑒−𝛼𝑟
2
𝐼𝑙(2𝛼𝑟𝑟𝑖)𝑑𝑟, (14)

in which 𝐼𝑙 is the modified spherical Bessel function of the first kind.
The 𝒄𝑛𝑙𝑚 coefficients are complex-valued and rotation variant. To 

ensure the rotation-invariance, we take its power spectrum combining 
these expansion coefficients:

𝒙𝑛1𝑛2𝑙 =
+𝑙 ∑

𝑚=−𝑙
𝒄𝑛1𝑙𝑚𝒄

∗
𝑛2𝑙𝑚

. (15)

Hence, each atom in the structure can be described as an 𝑛max ×
𝑛max × 𝑙max array. After symmetry reduction, this can be furthered re-
duced to an 1D array of 𝑛max × (𝑛max +1)× (𝑙max +1)∕2. In addition, the 
derivative of 𝒙 with respect to all atomic coordinates (𝜕𝒙∕𝜕𝑹) will be 
needed for the computation of forces. The full expression and deriva-
tions can be found in Ref. [23].

For practical applications, we choose 𝑛max= 3, and 𝑙max=4, result-
ing in a 30-length array to represent a single atomic environment (𝒙𝑖). 
If a cutoff distance 5-6 Å is chosen, one expects to find 30-50 neighbor-
ing atoms, and thus each atom’s 𝜕𝒙∕𝜕𝑹 array is expected to have a size 
of (30, 50, 3).

2.3. Gaussian Kernel choices

After the structure descriptor is known, we define the similarity be-
tween two atoms (encoded as 𝒙1 and 𝒙2) from the cosine distance:

𝑑(𝒙1,𝒙2) =
𝒙1 ⋅ 𝒙2|𝒙1||𝒙2| , (16)

resulting a scalar between 0 and 1. To improve the distinction capability, 
one can further apply the power law to get the distance metric (𝐷),

𝐷(𝒙1,𝒙2) = 𝑑𝜁 (17)

where 𝜁 is a integer to control the distribution.
The corresponding derivatives are:

𝜕𝑑 
𝜕𝒙1

=
𝒙2|𝒙1|− (𝒙1 ⋅ 𝒙2)

𝒙1|𝒙1||𝒙2||𝒙1|2
=

𝒙2|𝒙1||𝒙2| − (𝒙1 ⋅ 𝒙2)𝒙1|𝒙1|3|𝒙2| 
(18)

𝜕2𝑑 
𝜕𝒙1𝜕𝒙2

= 𝜕

𝜕𝒙2

(
𝒙2|𝒙1||𝒙2| − (𝒙1 ⋅ 𝒙2)𝒙1|𝒙1|3|𝒙2| 

)
= I|𝒙1||𝒙2| − 𝒙2 ⊗ 𝒙2|𝒙1||𝒙2|3 +

(𝒙1 ⋅ 𝒙2)𝒙1 ⊗ 𝒙2|𝒙1|3|𝒙2|3 −
𝒙1 ⊗ 𝒙1|𝒙1|3|𝒙2|

(19)

Following the definition of 𝐷, the derivatives are:

𝜕𝐷 
𝜕𝒙1

= 𝜁𝑑𝜁−1
𝜕𝑑 
𝜕𝒙1

𝜕𝐷 
𝜕𝒙2

= 𝜁𝑑𝜁−1
𝜕𝑑 
𝜕𝒙2

𝜕2𝐷 
𝜕𝒙1𝜕𝒙2

= 𝜕

𝜕𝒙2

(
𝜕𝐷 
𝜕𝒙1

)
= 𝜕

𝜕𝒙2

(
𝜁𝑑𝜁−1

𝜕𝑑 
𝜕𝒙1

)
= 𝜁

[
𝑑𝜁−1

𝜕2𝑑 
𝜕𝒙1𝜕𝒙2

+ (𝜁 − 1)𝑑𝜁−2 𝜕𝑑 
𝜕𝒙1

𝜕𝑑 
𝜕𝒙2

] (20)

Once 𝐷 is determined, we can construct two types of kernel func-
tions.

𝑘(𝒙1,𝒙2) =

{
𝜃2 exp[ 12𝐷(𝒙1,𝒙2)∕𝑙2] RBF

𝜃2[𝜎20 +𝐷(𝒙1,𝒙2)] Dot Product
(21)

For both RBF and Dot Product kernels, we use the following relations 
to compute the derivatives:
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𝜕𝑘(𝒙1,𝒙2)
𝜕𝒙1

= 𝜕𝑘 
𝜕𝐷

𝜕𝐷 
𝜕𝒙1

𝜕𝑘(𝒙1,𝒙2)
𝜕𝒙2

= 𝜕𝑘 
𝜕𝐷

𝜕𝐷 
𝜕𝒙2

(22)

𝜕𝑘 
𝜕𝐷

=

{
0.5𝜃2
𝑙2

exp (−0.5(1 −𝐷)∕𝑙2) RBF

𝜃2 Dot Product
(23)

𝜕2𝑘 
𝜕𝒙1𝜕𝒙2

=
⎧⎪⎨⎪⎩

𝜕𝑘 
𝜕𝐷

[
𝜕2𝐷 

𝜕𝒙1𝜕𝒙2
+ 1 

2𝑙2
𝜕𝐷 
𝜕𝒙1

𝜕𝐷 
𝜕𝒙2

]
RBF

𝜕𝑘 
𝜕𝐷

𝜕2𝐷 
𝜕𝒙1𝜕𝒙2

Dot Product
(24)

2.4. Total energy and forces

In a structure 𝑠1 with the associated descriptors {𝒙𝑠1 , 𝜕𝒙𝒔𝟏∕𝜕𝑹}, its 
total energy is 𝐸 =

∑𝑁1
1 𝐸𝑖, where 𝐸𝑖 is the linear combination of some 

basis functions. We can define the summed energy kernel (𝑘ee) to ex-
press the covariance of energies between two structures (𝑠1 and 𝑠2)

𝑘𝑒𝑒(𝒙𝑠1 ,𝒙𝑠2 ) =
1 

𝑁𝑠1
𝑁𝑠2

𝑁𝑠1∑
𝑖=1 

𝑁𝑠2∑
𝑗=1 

𝑘(𝒙𝑠1
𝑖
,𝒙

𝑠2
𝑗
), (25)

in which 𝑁𝑠1
and 𝑁𝑠2

denote the number of atoms in each structure, 
respectively.

𝑭 is related to energy by:

𝑭 𝑖 = −
𝜕𝐸total

𝜕𝑹𝑖

= −
all atoms∑

𝑗

𝜕𝐸𝑗

𝜕𝑹𝑖

(26)

Therefore, we build the derivative kernel (𝑘ff) between 𝑭 𝑖 and 𝑭 𝑗 , 
as long as the descriptor information {𝒙𝑖, 𝜕𝒙𝑖∕𝜕𝑹} and {𝒙𝑗 , 𝜕𝒙𝑗∕𝜕𝑹} 
are known.

𝑘ff(𝒙𝑖,𝒙𝑗 ) =
𝑁𝑖∑
𝑖′

𝑁𝑗∑
𝑗′

𝑘

(
𝜕𝐸𝑖

𝜕𝒙𝑖′

𝜕𝒙𝑖′

𝜕𝑹𝑖

,
𝜕𝐸𝑗

𝜕𝒙𝑗′

𝜕𝒙𝑗′

𝜕𝑹𝑗

)

=
𝑁𝑖∑
𝑖′

𝑁𝑗∑
𝑗′

(
𝜕𝒙𝑖′

𝜕𝑹𝑖

)𝑇 𝜕2𝑘(𝒙𝑖′ ,𝒙𝑗′ )
𝜕𝒙𝑖′𝜕𝒙𝑗′

𝜕𝒙𝑗′

𝜕𝑹𝑗

,

(27)

where 𝑁𝑖 and 𝑁𝑗 denote the number of neighbors within the cutoff 
distances.

Next, we also need the kernel (𝑘ef) between energy 𝐸𝑠1
and 𝑭 𝑗

𝑘ef(𝒙𝑠1 ,𝒙𝑗 ) = 𝑘

(
𝐸𝑠1

,
𝜕𝐸𝑗

𝜕𝑹𝑗

)
= 1 
𝑁𝑠1

𝑁𝑠1∑
𝑖=1 

𝑁𝑗∑
𝑗′=1

𝜕𝑘(𝒙𝑖,𝒙𝑗′ )
𝜕𝒙𝑗′

𝜕𝒙𝑗′

𝜕𝑹𝑗

(28)

Assuming there exists 𝑁𝑒 energy points (𝒙𝑠1 ,𝒙𝑠2 ,… ) and 𝑁𝑓 force 
points (𝒙01,𝒙

0
2), the total GPR covariance is a combination of energy/-

force kernels

𝑪 total =
(
𝑲ee 𝑲ef
𝑲𝑇

ef 𝑲ff

)
+ 𝛽𝜹𝑚𝑛

which is a 𝑁𝑐 ×𝑁𝑐 square matrix (𝑁𝑐 =𝑁𝑒 + 3 × 𝑁𝑓 ).
After determining the covariance matrix 𝑪 total, the 𝑮𝜶 can be ob-

tained.
To predict the energy and forces for a new structure {𝒙𝑡,𝝏𝒙𝒕∕𝝏𝑹}, 

one can follow eq. (6) to get the energy and force predictions.

𝐸𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑘ee(𝒙𝑡,𝒙𝑠1 )
⋮

𝑘ee(𝒙𝑡,𝒙𝑠𝑛 )
𝑘ef(𝒙𝑡,𝒙1)

⋮
𝑘ef(𝒙𝑡1 ,𝒙

0
3𝑛)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅𝑮𝛼 𝑭 𝑡

𝑖
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝑘fe(𝒙𝑖,𝒙𝑠1 )
⋮

𝑘fe(𝒙𝑖,𝒙𝑠𝑠)
𝑘ff(𝒙𝑖,𝒙01)

⋮
𝑘ff(𝒙𝑖,𝒙03𝑛)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅𝑮𝛼 (29)

3. Algorithm implementation

To enable the GPR framework for practical NEB calculation, we have 
developed different modules to handle descriptor calculation, GPR re-
gression, hybrid calculator implementation, and interfaces with existing 
NEB calculation tools. We also incorporate parallelization to enable fast 
computation.

3.1. Core modules

The package consists of five main modules that handle different as-
pects of the calculations, as summarized in Fig. 1:

1. gpr_calc.descriptor: Processes input structures and computes 
structural descriptors.

2. gpr_calc.kernel: Initializes RBF and Dot Product kernels with 
predefined parameters, compute different kernel functions (𝑘ee, 𝑘ef, 
𝑘ff), and constructs the total covariance matrix 𝐶total.

3. gpr_calc.GP: Provides the framework for optimizing kernel pa-
rameters, predicts energies for new structures, and enables dynamic 
updates of the training dataset and covariance matrix.

4. gpr_calc.calculator: Implements the hybrid calculator that 
combines base electronic structure calculations with on-the-fly GPR 
predictions based on uncertainty thresholds.

5. gpr_calc.NEB: Contains utilities and interfaces with ASE’s ase. 
mep.NEB module, including functions for initializing images, run-
ning NEB calculations, and plotting the results.

3.2. Acceleration and parallelization

Compared to other machine learning models such as neural net-
works, GPR is known to suffer from scalability issues, with compu-
tational costs scaling cubically with dataset size. In our application, 
additional expensive components include the computation of descrip-
tors and kernels, particularly for 𝑘ff, 𝑘ef and 𝑘fe computations. For large 
numbers of structures, descriptor computation can also become a bot-
tleneck, especially in Python implementations.

To address these challenges while maintaining Python’s flexibility 
and ease of use, we have implemented several optimization strategies:

First, we rewrote the kernel computation in C++ and used the cffi 
library to interface with the Python code. This allows us to leverage 
C++’s computational speed while preserving Python’s flexibility and 
rich ecosystem.

Second, we parallelized the GPR calculator using the mpi4py library 
[25]. In the GPR calculation, each processor computes the covariance 
matrix for a subset of the data points. This enables efficient scaling to 
large datasets by distributing computations across multiple processors. 
When a large training database is loaded, the computation of structural 
descriptors is also parallelized across multiple processors.

3.3. The overall NEB-GPR workflow

Fig. 2 shows the overall workflow for a practical NEB calculation us-
ing the GPR calculator. The NEB-GPR workflow consists of two main 
steps: (1) the NEB module handles the input images to generate ini-
tial trajectory and then optimize the trajectory based on the calculated 
energy and forces for each image; (2) the GPR calculator predicts the 
energy and forces for each image in the NEB calculation. If the GPR cal-
culator is uncertain about its predictions, it calls the base calculator to 
compute the energy and forces for that image. The GPR model is then 
updated with the new image’s energy and forces. This process continues 
until the NEB calculation converges.

To ensure the GPR calculator is not overly reliant on the base cal-
culator, we set a threshold for the maximum uncertainty in energy and 
forces (e.g. 𝜎𝐸 = 0.05 eV/structure for energy and 𝜎𝐹 =0.075 eV/Å for 
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Fig. 1. The list of available modules in the GPR_calculator package and their corresponding outputs. The modules with acceleration are also highlighted in light 
blue boxes. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. The workflow of NEB-GPR calculation. (a) In a NEB run, each image’s energy and forces are predicted by the GPR calculator until the NEB calculation 
converges. (b) The GPR calculator use either GP model or the base calculator to yield the energy and forces. If the base calculator is called, the GP model is updated 
with the new image’s energy and forces.

forces). If the predicted uncertainty exceeds this threshold, the GPR cal-
culator will call the base calculator to compute the energy and forces 
for that image. This allows us to balance the computational efficiency 
of the GPR calculator with the accuracy of the base calculator. Since a 
practical NEB calculation mainly seeks to minimize the spring forces, we 
choose to use only 𝜎𝐹 . For each single point energy calculation, the GPR 
calculator will check the predicted forces and compare them with the 
threshold (𝜎𝐹 ). If the predicted forces are larger than the threshold and 
one third of the predicted forces, the GPR calculator will call the base 
calculator to compute the energy and forces for that image. The DFT en-
ergy, as well as the atomic forces with large uncertainty, will be then 
added to the GP database and then used to update the GP model. This 
allows us to ensure that the NEB calculation converges to a physically 
meaningful result.

For NEB calculations on supercomputer nodes, we partition the avail-
able physical cores into two groups: one for the GPR calculator and the 
other for the base calculator. The GPR calculator is responsible for com-
puting the covariance matrix and predicting energies, while the base 

calculator handles the actual electronic structure calculations. This di-
vision of labor allows us to fully utilize the available computational 
resources and achieve significant speedup in NEB calculations. To avoid 
frequent GP model update, we usually check if there is a need to update 
the model at the end of each NEB iteration.

4. Dependencies

The majority of codes are written in Python 3.9 or higher. Like many 
other Python packages, it relies on several external Python libraries. 
This library is intended to interface with ASE for practical calculations 
and hence it inherits all package dependencies (e.g., Numpy [26], Scipy 
[27]) required by ASE.

In addition, the cffi [28] and mpi4py [25] libraries are required 
for the C++ kernel implementation and parallelization, respectively. As 
such, the package requires a C++ compiler and an OpenMPI implemen-
tation to be installed on the system. The package is compatible with 
both Linux and macOS operating systems.
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5. Installation and example usages

The GPR_calculator package can be installed using pip. The pack-
age is compatible with Python 3.9 and later versions. To install, sim-
ply download the source code from https://github.com/MaterSim/GPR_
calculator, change directory to the root folder and then run pip in-
stall. from the terminal.

The following simple example demonstrates how to set up a GPR 
calculator, perform a NEB calculation, and visualize the results.

f r o m a s e . c a l c u l a t o r s . e m t i m p o r t E M T 
f r o m g p r _ c a l c . g a u s s i a n p r o c e s s i m p o r t G P 
f r o m g p r _ c a l c . c a l c u l a t o r i m p o r t G P R 
f r o m g p r _ c a l c . N E B i m p o r t n e b _ c a l c , g e t _ i m a g e s , p l o t _ p a t h 

# S e t p a r a m e t e r s 
i n i t = ’ d a t a b a s e / i n i t i a l . t r a j ’ 
f i n a l = ’ d a t a b a s e / f i n a l . t r a j ’ 
f m a x = 0 . 0 5 

# R u n N E B w i t h E M T c a l c u l a t o r 
i m a g e s = g e t _ i m a g e s ( i n i t , f i n a l , 5 ) 
n e b = n e b _ c a l c ( i m a g e s , E M T ( ) , f m a x = f m a x ) 
l a b e l = f ’ E M T ( { s t e p s * ( l e n ( i m g s ) -2 ) + 2 } ) ’ 
d a t = [ ( n e b . i m a g e s , n e b . e n e r g i e s , l a b e l ) ] 

# R u n N E B w i t h g p r c a l c u l a t o r s 
f o r t o l i n [ 0 . 0 5 , 0 . 1 ] : 

i m g s = g e t _ i m a g e s ( i n i t , f i n a l , 5 ) 

# I n i t i a l i z e G P R m o d e l & c a l c u l a t o r 
n o i s e _ e = t o l / l e n ( i m a g e s [ 0 ] ) 
g p = G P . s e t _ G P R ( i m a g e s , E M T ( ) , 

n o i s e _ e = n o i s e _ e , 
n o i s e _ f = t o l ) 

c a l c = G P R ( b a s e = E M T ( ) , f f = g p ) 

# R u n N E B c a l c u l a t i o n 
n e b = n e b _ c a l c ( i m a g e s , c a l c , f m a x = f m a x ) 
N 1 = g p . u s e _ b a s e 
N 2 = g p . u s e _ s u r r o g a t e 
l a b e l = f ’ G P R -{ t o l : . 2 f } ( { N 1 } / { N 2 } ) ’ 
d a t . a p p e n d ( ( n e b . i m a g e s , n e b . e n e r g i e s , l a b e l ) ) 

# P l o t t h e r e s u l t s 
n e b _ p l o t _ p a t h ( d a t , f i g n a m e = ’ p a t h . p n g ’ , 

t i t l e = ’ A u d i f f u s i o n o n A l ( 1 0 0 ) ’ ) 
Listing 1: A Python script to perform a NEB calculation using 
GPR_calculator

In this example, we first import the necessary modules and set the 
initial and final structures, as well as the maximum force tolerance. We 
then run the NEB calculation using the effective medium theory (EMT) 
calculator [29] and store the results in the dat list. Next, we run the 
NEB calculation using the GPR calculator for different energy/force tol-
erances and store the results in the data list. Finally, we plot the results 
using the plot_path function.

The resulting plot in Fig. 3 illustrates the energy profile of Au diffu-
sion on the Al(100) surface, comparing the EMT and GPR calculators. 
Notably, the GPR calculator with a smaller tolerance setting (0.05 eV 
for energy and 0.05 eV/Å for forces) produces results close to the EMT-
driven NEB calculation, but requires only 8 EMT single-point energy 
evaluations, compared to 56 for the pure EMT calculation. Conversely, 
the GPR calculator with a larger tolerance setting (0.10 eV for energy 
and 0.10 eV/Å for forces) exhibits a more noticeable deviation.

Due to the existence of uncertainty, it is common that surrogate-
driven NEB simulation requiring more iterations to converge to the 
desired minimum. Despite this, the GPR calculator still substantially re-
duces the computational effort needed for convergence. Given that DFT 
calculations, which are more accurate and expensive than EMT, are typ-
ically used as the base calculator, a significant speedup (3-10 times) is 
anticipated. For optimal performance, users can adjust the tolerance val-
ues to balance accuracy and computational efficiency.

Fig. 3. The simulated Au diffusion on Al(100) surface from the EMT and GPR 
calculators with different energy tolerances. The number of EMT/GPR calcula-
tions required for convergence is shown in parentheses.

6. Practical applications

To demonstrate the capabilities of the GPR_calculator package, 
we focus on the use of GPR models to accelerate NEB calculations for 
surface diffusion and dissociation reactions, relative to traditional DFT-
driven approaches. The examples presented here are intended to show-
case the versatility and efficiency of the package in a variety of scenarios.

In both examples, our DFT calculations are performed using the Vi-
enna ab initio simulation package (VASP) [30–32]. The core electrons 
and the electron-electron exchange correlation effects are treated using 
the projector augmented wave (PAW) [33,34] method and the Perdew-
Burke-Ernzerhof (PBE) functional [35], respectively. The valence elec-
trons are modeled using a plane-wave basis set expanded to a cutoff 
energy of 400 eV. The Methfessel-Paxton smearing method [36] with 
a smearing width of 0.1 eV, and the calculations are deemed to have 
converged with energy and force tolerances of 10−4 eV and 0.03 eV/Å, 
respectively. For NEB optimization, the calculations were considered to 
have converged when the force on the images is less than 0.075 eV/Å us-
ing the FIRE algorithm [37]. The image dependent pair potential (IDPP) 
method [38] is preferred over linear interpolation to generate the ini-
tial guess of the MEP because it produces a more physically meaningful 
pathway. IDPP prevents atoms from being placed too close to each other, 
which would otherwise lead to large energy and force spikes. This helps 
avoid potential divergence in electronic structure calculations.

In the following examples, we run each system with a single compute 
node of AMD EPYC 9654P 96-Core Processor with 2.40 GHz. For GPR 
calculations, we set up the GPR calculator with a noise of 0.05 eV/struc-
ture for energy and 0.075 eV/Å for forces, a cutoff distance of 5.0 Å for 
the descriptor calculation, and the energy and forces are predicted using 
the RBF kernel. Out of 96 cores, 24 cores are used for the GPR calcula-
tor, while the remaining 72 cores are used for the base calculator. For 
the pure VASP calculations, all 96 cores were used for each single point 
energy calculation of the NEB image.

6.1. Pd4 cluster diffusion on MgO(100) surface

We first consider the diffusion of a Pd4 cluster on the MgO(100) 
surface, which is a classical NEB example as discussed in the previous 
literature [39]. The initial state consists of a Pd4 cluster adsorbed on 
the MgO(100) surface, while the final state features the same cluster in 
a different position on the surface. MgO(100) is modeled as a three-layer 
surface (72 atoms per layer) with atoms in the top two layers relaxed and 
those in the bottom two layers fixed in their bulk positions, consistent 
with Henkelman et al. [39]. A 15 Å vacuum is included and the Brillouin 
zone (BZ) is sampled using a (2 × 2 × 1) Monkhorst-Pack k-point mesh.
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Fig. 4. (a) The simulated MEP of Pd4’s dissociation on the MgO(100) surface 
from both the GPR and pure VASP calculators. The representative structures 
along the transition path are also shown in the inset. (b) The usage of GPR and 
base calls during the MEP optimization. Each NEB iteration includes 7 consec-
utive images.

Fig. 4a shows the MEP for the diffusion of the Pd4 cluster on the 
MgO(100) surface, as calculated using both the GPR and pure VASP 
calculators. Clearly, both calculators yield nearly identical MEPs. The 
difference in the energy barrier is negligible: 0.44 eV from the GPR 
calculator compared to 0.43 eV from the pure VASP calculator. Addi-
tionally, the transition states (TS), featured as a rolling of Pd4 to an 
adjacent site, are nearly identical in both cases.

Remarkably, the GPR calculator demonstrates substantial accelera-
tion, completing the MEP optimization within 6 hours, consisting of 80 
VASP calls and 340 GPR calls. As compared to the VASP results (36.5 
hours consisting of 337 DFT calls), the GPR achieves resulting a 5 times 
speed-up. The GPR calculator’s efficiency is attributed to its ability to 
predict energies and forces on-the-fly. In fact, the majority of NEB sim-
ulation can be achieved with less than 50 VASP calls and 110 GPR calls 
when the maximum NEB force is 0.09 eV/Å. The rest of simulation were 
mostly used to refine the final results.

For a typical diffusion energy barrier less than 0.50 eV, the GPR can 
achieve satisfactory accuracy with a small number of VASP calls. This 
example highlights the potential of the GPR calculator to accelerate NEB 
calculations while maintaining accuracy.

In addition to the use of self-adaptive surrogate model, one may in-
tuitively speculate that periodically updating the model (e.g., retraining 
the model every 10 NEB steps) can equally guide the MEP optimization 
process well. However, this proposal is unlikely to work according to 
our analysis as shown in Fig. 4b, which plots the detailed VASP/GPR 
usage in each NEB iteration in our calculation. In the first 20 NEB itera-
tions, the NEB update is mainly powered by VASP calculations, allowing 

construction of a relatively accurate GPR surrogate model. Between it-
erations 20-40, the majority of force calculations are done by the GPR 
model, suggesting that the NEB calculation is exploring a suboptimal 
pathway with only minor structural updates. Next, some intermediate 
images undergo notable changes during the NEB path exploration be-
tween iterations 40-60, eventually leading to the converged path with 
a low energy barrier. In all cases, one needs to detect the magnitude of 
structural changes in time and invoke DFT calculations when necessary. 
Clearly, the occurrence of major structural updates is neither periodic 
nor uniformly distributed, making periodic model updates ineffective. 
On the other hand, the GPR calculator’s on-the-fly model update strat-
egy allows it to adaptively adjust to the changing energy landscape, 
ensuring that the NEB calculation remains efficient and accurate.

6.2. H2S dissociation on Pd(100) surface

To test the feasibility of the GPR calculator for chemical reactions, 
we consider a more challenging system: the dissociation of H2S on a 
Pd(100) surface. This system is not only of great interest in catalysis 
and surface chemistry, but also computationally more challenging as it 
involves the breaking of chemical bonds and the formation of new ones 
[40,41]. The initial state consists of a single H2S molecule adsorbed 
on the Pd(100) surface, while the final state features two H atoms and 
an S atom adsorbed on the surface. The Pd(100) surface is modeled as 
a four-layer slab (9 atoms per layer) with the top two layers relaxed 
and the bottom two layers fixed in their bulk positions. A 15 Å vacuum 
is included and the Brillouin zone (BZ) is sampled using a (3 × 3 × 1)
Monkhorst-Pack k-point mesh. The NEB calculations for this system are 
considered to have converged when the maximum force on each image 
is less than 0.075 eV/Å. To ensure the saddle point is correctly identified 
along the NEB path, we used the climbing image method [3] instead of 
the regular NEB method.

Fig. 5 shows the MEP of H2S dissociation on the Pd(100) surface, 
calculated using the GPR calculator. For comparison, the final NEB tra-
jectories are also recomputed with the pure VASP calculator. Clearly, the 
energy profiles from GPR and VASP are nearly identical (with no more 
than 0.015 eV for each image), confirming the accuracy of GPR model. 
Due to the inherent uncertainty in GPR models, we found that conver-
gence becomes challenging when the maximum NEB forces approach 
0.075 eV/Å. To validate the reliability of this GPR-optimized NEB tra-
jectory, we performed a NEB calculation using a pure VASP calculator 
with the GPR-generated path as the initial MEP guess. After 25 NEB it-
erations, the trajectory successfully converged to a maximum NEB force 
below 0.05 eV/Å, exhibiting only minimal structural changes.

As shown in Fig. 5, the dissociation proceeds in two steps, with ac-
tivation barriers of 0.24 eV and 0.31 eV, respectively. The mechanism 
involves sequential H-S bond breaking: first H2S → HS + H, followed 
by HS + H → 2H + S. In the initial state, the H-S bond length is 1.34 
Å. During dissociation, both H-S bonds gradually elongate as the hydro-
gen atoms separate from the sulfur. In the first step, the dissociated H-S 
and H fragment from H2S initially on the top site migrates to adjacent 
bridge sites, with the H-S distance extending to 1.88 Å at the transition 
state (TS1). In the second step, the H-S and H fragments begin at hol-
low sites, their most favorable adsorption positions. The H-S fragment 
first rotates, after which the S atom remains at the hollow site while 
the H migrates to second nearest neighbor bridge site, causing the H-S 
length to increase from 1.33 Å to 1.42 Å at TS2 . Beyond TS2, the H atom 
follows a curved path to reach its final bridge site position.

In terms of computational efficiency, the GPR calculator completes 
the whole MEP optimization in 4.5 hours with 395 VASP calls and 1350 
GPR calls. Given that the GPR cost is much lower than that of VASP 
computations, this approximately represents a 3.5 times speedup. This 
acceleration is slightly less than in the previous example due to the more 
complex and asymmetric energy surface requiring more VASP calls.

This example highlights the GPR_calculator’s capability to han-
dle complex chemical reactions, while maintaining accuracy and effi-
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Fig. 5. The simulated MEP of H2S’s dissociation on the Pd(100) surface from both the GPR and pure VASP calculators. The representative structures along the 
transition path are also shown in the inset.

Fig. 6. The simulated MEP of H2S dissociation on the (100) surfaces using the GPR calculator for (a) H2S → HS + H; and (b) HS → S + H. In the lower panel, the 
transition states for each step are also shown. Green, orange, blue, gray, yellow, and white spheres represent Ag, Au, Cu, Pt, S and H atoms, respectively.

ciency. When the energy profile is more complex and it requires more 
NEB iterations to reach the converged pathway, the surrogate model is 
expected to result in a better speed up. In computational catalysis design, 
the ability to accurately predict transition states and reaction pathways 
is crucial for understanding catalytic mechanisms. The GPR_calcu-
lator’s performance in this example demonstrates its potential as a 
valuable tool for studying complex chemical processes.

6.3. H2S dissociation on (100) transition metal surfaces

Having demonstrated the capabilities of the GPR calculator for mod-
eling H2S dissociation on Pd, we extend its application to other (100) 
transition metal surfaces: Au, Ag, Cu, and Pt. The computational setup 
is similar to that of the Pd example above, with stricter criterion that 
NEB calculations are considered converged when the maximum force 
on each image falls below 0.05 eV/Å and a (2×2×1) k-point mesh. The 

whole results, including both energy profile and transition state config-
urations, are summarized in Fig. 6.

The first step of dissociation, as shown in Fig. 6a, is analogous to that 
on Pd, where H-S and H dissociated fragments from the H2S adsorbed 
on a top site, migrate to adjacent bridge sites. At the transition state, the 
H fragment is closer to the top site for Pt, whereas it on the bridge site 
for Au, Ag and Cu. Additionally, the distances between S atom and the 
migrating H atom at the transition state increase from 1.36 Å to 2.37 Å, 
2.12 Å, 2.17 Å, and 1.75 Å for Au, Ag, Pt, and Cu, respectively. Among 
these, Pt exhibits the most favorable energetics for hydrogen abstrac-
tion, with a low reaction barrier of 0.075 eV and a highly exothermic 
reaction energy of -1.18 eV, indicating facile and strongly favorable dis-
sociation. Cu and Au also facilitate this step, with reaction energies of 
-0.91 eV and -0.46 eV, and moderate barriers of 0.44 eV and 0.41 eV, re-
spectively. Ag is the least reactive surface, with reaction energy of -0.40 
eV and the highest barrier at 0.73 eV.
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Table 1
The detailed GPR/VASP usage and timing for H2S disso-
ciation on different (100) metal surfaces on a single AMD 
EPYC 9654P 96-Core code.

Surface VASP calls GPR calls Total time (hours) 
Ag(100) 513 1912 4.60 
Au(100) 691 1304 9.55 
Cu(100) 317 1133 2.75 
Pt(100) 683 2207 14.43 

In the second dissociation step (Fig. 6b), the H-S fragment begins at 
a hollow site, with the sulfur atom remaining at that position while the 
hydrogen migrates to a bridge site. The reaction path is approximately 
linear on Ag and Cu but appears curved on Au and Pt, as observed on 
Pd. The S-H distances at the transition state increase from 1.37 Å to 1.83 
Å, 2.13 Å, 1.56 Å, and 1.40 Å for Au, Ag, Cu, and Pt, respectively. This 
step is energetically unfavorable on Ag and Au, with Ag being endother-
mic (0.21 eV) and Au nearly thermoneutral (-0.07 eV), accompanied by 
barriers of 1.05 eV and 0.46 eV, respectively. Conversely, the reaction is 
exothermic on Cu(-0.46 eV) and Pt(-1.18 eV), with low barriers of 0.42 
eV and 0.25 eV, respectively. As in the first step, Pt(100) exhibits the 
most favorable energetics, combining the lowest activation energy with 
the most exothermic reaction profile.

Overall, our simulation results suggest that the H2S dissociation is 
less favorable on noble metals (Ag, Au) than on transition metals (Cu, 
Pd, Pt). Both Pd and Pt surfaces readily facilitate dissociation, character-
ized by low energy barriers and strongly exothermic reaction profiles. 
These trends align with previous DFT studies by Alfonso et al. [41], con-
firming the accuracy of the GPR calculator.

Table 1 summarizes the breakdowns for all calculations. Generally, 
the number of GPR evaluations exceeded that of VASP by at least a 
factor of three, with the exception of the Au(100) surface, which re-
quired slightly less than 2 times more GPR calls. This deviation likely 
stems from a more intricate potential energy surface associated with 
Au(100), characterized by more substantial atomic displacements of 
the surface atoms during relaxation, especially pronounced in the sec-
ond dissociation step. These larger structural rearrangements make it 
more challenging for the GPR model to accurately interpolate and pre-
dict forces across configurations. Overall, we anticipate that the GPR 
calculator achieves a speedup of 3-5 times compared to pure VASP cal-
culations.

7. Remarks on the limitation and potential serendipity

As demonstrated in the previous sections, surrogate models often 
require more iterations to converge. When the system approaches the 
minimum energy pathway, high force accuracy becomes crucial, ne-
cessitating frequent calls to the base calculator and updates to the GP 
model. This can lead to unnecessary optimization steps in NEB itera-
tion. To prevent such inefficient exploration, it is recommended to set 
a slightly larger force tolerance (e.g., 0.075 - 0.100 eV/Å). For barrier 
calculations, we found that this approach typically yields activation en-
ergies within 0.05 eV error of the true value. When DFT-level accuracy 
is required, one can perform a quick pure DFT-NEB calculation using the 
GP-optimized trajectory as the initial guess, which typically converges 
rapidly.

On the other hand, the inherent noise in GPR models can sometimes 
be beneficial, particularly in preventing convergence to shallow local 
minima during NEB pathway optimization. In practical NEB calcula-
tions, the optimized trajectory heavily depends on the initial guess. For 
example, in the second step of H2S dissociation (HS + H→ 2H + S) on 
Pd(100), a linear dissociation path is often assumed as the initial guess. 
Fig. 7 shows two distinct pathways found by DFT and GPR calculations. 
Starting from a linear initial guess, the DFT-driven NEB converges to a 
linear pathway with a 0.46 eV activation barrier after 53 iterations. In 

Fig. 7. The simulated MEP of HS dissociation on the Pd(100) surface from both 
the GPR and pure VASP calculators. The transition states are shown in the inset, 
with the marks of linear and curved arrows to indicate the migration pathway 
for the H atom. The force convergence criteria of 0.075 eV/Å was used for the 
NEB calculations.

contrast, our GPR model’s uncertainty-driven exploration, also explored 
the linear pathway in the beginning, but then revealed a curved pathway 
with a lower activation barrier of 0.31 eV after 160 iterations. Moreover, 
when the curved path revealed by the GPR model was used as an initial 
guess for pure DFT-NEB calculation, the path retained its curvature with 
no structural changes to the transition state configuration, even under a 
tightened force convergence criterion of 0.05 eV/Å. This serendipitous 
finding suggests that the stochastic nature of GPR predictions can oc-
casionally help discover unexpected yet physically meaningful reaction 
pathways.

8. Conclusion

In this work, we introduce GPR_calculator, a Python and C++ 
package designed to construct on-the-fly surrogate models using Gaus-
sian Process Regression to expedite computationally intensive electronic 
structure calculations. A key feature of GPR_calculator is its abil-
ity to dynamically train a GPR model during simulations, accurately 
predicting energies and forces while quantifying uncertainty. The pack-
age is designed for ease of use and seamless integration with the ASE. 
We have demonstrated the capabilities of GPR_calculator through 
benchmark examples, showcasing its acceleration of NEB calculations 
for surface diffusion and reactions. Our results indicate that GPR_cal-
culator can substantially decrease the computational demands of 
these simulations without sacrificing accuracy.

The framework is designed to be extensible, allowing users to eas-
ily add new calculators other than VASP (e.g., Quantum Espresso [42], 
DFTB+ [43]), new NEB optimization algorithms (e.g., L-BFGS [20]), as 
well as new GPR functionalities (e.g., new descriptors [21], new kernel 
choices [19]). In addition, the training data collected from the on-the-
fly simulation can also be used for developing other flavors of machine 
learning force fields such as Neural Networks [9]. In the future, we 
will focus on improving the efficiency of the GPR model, particularly 
in terms of scaling to larger datasets, parallelizing the calculations over 
NEB images, and enhancing the accuracy of predictions. We anticipate 
that GPR_calculator will serve as a valuable asset for researchers in 
computational materials science and catalysis, enabling more efficient 
exploration of complex chemical processes.
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